Advertisement

Development of novel therapeutics for all individuals with CF (the future goes on)

Published:October 30, 2022DOI:https://doi.org/10.1016/j.jcf.2022.10.007

      Highlights

      • Curative therapies to all individuals with CF is still an unmet need.
      • We identify what is still missing to treat all individuals with CF.
      • Novel holistic approaches are underway to identify novel drug targets for CF.
      • Gene editing to correct the mutations is a promising therapeutic solution for all.

      Abstract

      Despite the major advances and successes in finding and establishing new treatments that tackle the basic defect in Cystic Fibrosis (CF), there is still an unmet need to bring these potentially curative therapies to all individuals with CF. Here, we review aspects of what is still missing to treat all individuals with CF by such approaches. On the one hand, we discuss novel holistic (high-throughput) approaches to elucidate mechanistic defects caused by distinct classes of mutations to identify novel drug targets. On the other hand, we examine therapeutic approaches to correct the gene in its own environment, i.e., in the genome.

      Keywords

      Abbreviations:

      CF (Cystic Fibrosis), CFTR (CF transmembrane conductance regulator), EMT (epithelial-mesenchymal transition), HC (high-content HT(S), high-throughput (screen))
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cystic Fibrosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Skilton M
        • Krishan A
        • Patel S
        • Sinha IP
        • Southern KW.
        Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis.
        Cochrane Database Syst Rev. 2019; 1CD009841https://doi.org/10.1002/14651858
        • Southern KW
        • Murphy J
        • Sinha IP
        • Nevitt SJ.
        Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del).
        Cochrane Database Syst Rev. 2020; 12CD010966https://doi.org/10.1002/14651858
        • Guo J
        • Garratt A
        • Hill A.
        Worldwide rates of diagnosis and effective treatment for cystic fibrosis.
        J Cyst Fibros. 2022; 21: 456-462https://doi.org/10.1016/j.jcf.2022.01.009
        • Guo J
        • Wang J
        • Zhang J
        • Fortunak J
        • Hill A.
        Current prices versus minimum costs of production for CFTR modulators.
        J Cyst Fibros. 2022; (S1569-1993(22)00090-X)https://doi.org/10.1016/j.jcf.2022.04.007
      1. http://www.genet.sickkids.on.ca – accessed August 2022

        • Castellani C
        CFTR2 team. CFTR2: How will it help care?.
        Paediatr Respir Rev. 2013; 14: 2-5https://doi.org/10.1016/j.prrv.2013.01.006
        • De Boeck K
        • Amaral MD.
        Progress in therapies for cystic fibrosis.
        Lancet Respir Med. 2016; 4: 662-674https://doi.org/10.1016/S2213-2600(16)00023-0
        • Bell SC
        • De Boeck K
        • Amaral MD.
        New pharmacological approaches for cystic fibrosis: promises, progress, pitfalls.
        Pharmacol Ther. 2015; 145: 19-34https://doi.org/10.1016/j.pharmthera.2014.06.005
        • Amaral MD.
        Novel personalized therapies for cystic fibrosis: treating the basic defect in all patients.
        J Intern Med. 2015; 277: 155-166https://doi.org/10.1111/joim.12314
      2. Kishor A, Fritz SE, Hogg JR. Wiley Interdiscip Rev RNA. 2019; 10(6):e1548. Nonsense-mediated mRNA decay: the challenge of telling right from wrong in a complex transcriptome. doi: 10.1002/wrna.1548.

        • Cheng SH
        • Gregory RJ
        • Marshall J
        • Paul S
        • Souza DW
        • White GA
        • O'Riordan CR
        • Smith AE.
        Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis.
        Cell. 1990; 63: 827-834https://doi.org/10.1016/0092-8674(90)90148-8
        • Farinha CM
        • Amaral MD.
        Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin.
        Mol Cell Biol. 2005; 25: 5242-5252https://doi.org/10.1128/MCB.25.12.5242-5252.2005
        • Csanády L
        • Vergani P
        • Gadsby DC.
        Structure, gating, and regulation of the cftr anion channel.
        Physiol Rev. 2019; 99: 707-738https://doi.org/10.1152/physrev.00007.2018
        • Oren YS
        • Pranke IM
        • Kerem B
        Sermet-Gaudelus I. The suppression of premature termination codons and the repair of splicing mutations in CFTR.
        Curr Opin Pharmacol. 2017; 34: 125-131https://doi.org/10.1016/j.coph.2017.09.017
        • Valentine CD
        • Lukacs GL
        • Verkman AS
        • Haggie PM.
        Reduced PDZ interactions of rescued ΔF508CFTR increases its cell surface mobility.
        J Biol Chem. 2012; 287: 43630-43638https://doi.org/10.1074/jbc.M112.421172
        • Amaral MD
        • Quaresma MC
        • Pankonien I.
        What Role Does CFTR Play in Development, Differentiation, Regeneration and Cancer?.
        Int J Mol Sci. 2020; 21: 3133https://doi.org/10.3390/ijms21093133
        • Neglia JP
        • FitzSimmons SC
        • Maisonneuve P
        • Schöni MH
        • Schöni-Affolter F
        • Corey M
        • Lowenfels AB
        The risk of cancer among patients with cystic fibrosis. Cystic Fibrosis and Cancer Study Group.
        N Engl J Med. 1995; 332: 494-499https://doi.org/10.1056/NEJM199502233320803
        • Maisonneuve P
        • Marshall BC
        • Knapp EA
        • Lowenfels AB.
        Cancer risk in cystic fibrosis: a 20-year nationwide study from the United States.
        J Natl Cancer Inst. 2013; 105: 122-129https://doi.org/10.1093/jnci/djs481
      3. Miller AC, Comellas AP, Hornick DB, Stoltz DA, Cavanaugh JE, Gerke AK, Welsh MJ, Zabner J, Polgreen PM. Cystic fibrosis carriers are at increased risk for a wide range of cystic fibrosis-related conditions. Proc Natl Acad Sci U S A. 21;117:1621-1627. doi: 10.1073/pnas.1914912117.

        • Botelho HM
        • Uliyakina I
        • Awatade NT
        • Proença MC
        • Tischer C
        • Sirianant L
        • Kunzelmann K
        • Pepperkok R
        • Amaral MD.
        Protein traffic disorders: an effective high-throughput fluorescence microscopy pipeline for drug discovery.
        Sci Rep. 2015; 5: 9038https://doi.org/10.1038/srep09038
        • Lérias JR
        • Pinto MC
        • Botelho HM
        • Awatade NT
        • Quaresma MC
        • Silva IAL
        • Wanitchakool P
        • Schreiber R
        • Pepperkok R
        • Kunzelmann K
        • Amaral MD.
        A novel microscopy-based assay identifies extended synaptotagmin-1 (ESYT1) as a positive regulator of anoctamin 1 traffic.
        Biochim Biophys Acta Mol Cell Res. 2018; 1865: 421-431https://doi.org/10.1016/j.bbamcr.2017.11.009
        • Pinto MC
        • Botelho HM
        • Silva IAL
        • Railean V
        • Neumann B
        • Pepperkok R
        • Schreiber R
        • Kunzelmann K
        • Amaral MD.
        Systems Approaches to Unravel Molecular Function: High-content siRNA Screen Identifies TMEM16A Traffic Regulators as Potential Drug Targets for Cystic Fibrosis.
        J Mol Biol. 2022; 434167436https://doi.org/10.1016/j.jmb.2021.167436
        • Simões FB
        • Quaresma MC
        • Clarke LA
        • Silva IA
        • Pankonien I
        • Railean V
        • Kmit A
        • Amaral MD.
        TMEM16A chloride channel does not drive mucus production.
        Life Sci Alliance. 2019; 2e201900462https://doi.org/10.26508/lsa.201900462
        • Sousa L
        • Pankonien I
        • Clarke LA
        • Silva I
        • Kunzelmann K
        • Amaral MD.
        KLF4 Acts as a wt-CFTR Suppressor through an AKT-Mediated Pathway.
        Cells. 2020; 9: 1607https://doi.org/10.3390/cells9071607
        • Quaresma MC
        • Pankonien I
        • Clarke LA
        • Sousa LS
        • Silva IAL
        • Railean V
        • Doušová T
        • Fuxe J
        • Amaral MD.
        Mutant CFTR Drives TWIST1 mediated epithelial-mesenchymal transition.
        Cell Death Dis. 2020; 11: 920https://doi.org/10.1038/s41419-020-03119-z
        • Quaresma MC
        • Botelho HM
        • Pankonien I
        • Rodrigues CS
        • Pinto MC
        • Costa PR
        • Duarte A
        • Amaral MD.
        Exploring YAP1-centered networks linking dysfunctional CFTR to epithelial-mesenchymal transition.
        Life Sci Alliance. 2022; 5e202101326https://doi.org/10.26508/lsa.202101326
        • Rommens JM
        • Iannuzzi MC
        • Kerem B
        • Drumm ML
        • Melmer G
        • Dean M
        • Rozmahel R
        • Cole JL
        • Kennedy D
        • Hidaka N
        • et al.
        Identification of the cystic fibrosis gene: chromosome walking and jumping.
        Science. 1989; 245: 1059-1065https://doi.org/10.1126/science.2772657
        • Riordan JR
        • Rommens JM
        • Kerem B
        • Alon N
        • Rozmahel R
        • Grzelczak Z
        • Zielenski J
        • Lok S
        • Plavsic N
        • Chou JL
        • et al.
        Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.
        Science. 1989; 245: 1066-1073https://doi.org/10.1126/science.2475911
        • Kerem B
        • Rommens JM
        • Buchanan JA
        • Markiewicz D
        • Cox TK
        • Chakravarti A
        • Buchwald M
        • Tsui LC.
        Identification of the cystic fibrosis gene: genetic analysis.
        Science. 1989; 245: 1073-1080https://doi.org/10.1126/science.2570460
        • Drumm ML
        • Pope HA
        • Cliff WH
        • Rommens JM
        • Marvin SA
        • Tsui LC
        • Collins FS
        • Frizzell RA
        • Wilson JM.
        Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer.
        Cell. 1990; 62: 1227-1233https://doi.org/10.1016/0092-8674(90)90398-x
        • Friedman KJ
        • Kole J
        • Cohn JA
        • Knowles MR
        • Silverman LM
        • Kole R.
        Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides.
        J Biol Chem. 1999; 274: 36193-36199https://doi.org/10.1074/jbc.274.51.36193
        • Lee CM
        • Flynn R
        • Hollywood JA
        • Scallan MF
        • Harrison PT.
        Correction of the ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Gene by Zinc-Finger Nuclease Homology-Directed Repair.
        Biores Open Access. 2012; 1: 99-108https://doi.org/10.1089/biores.2012.0218
        • Bangel-Ruland N
        • Tomczak K
        • Fernández Fernández E
        • Leier G
        • Leciejewski B
        • Rudolph C
        • Rosenecker J
        • Weber WM
        Cystic fibrosis transmembrane conductance regulator-mRNA delivery: a novel alternative for cystic fibrosis gene therapy.
        J Gene Med. 2013; 15: 414-426https://doi.org/10.1002/jgm.2748
        • Cox DBT
        • Gootenberg JS
        • Abudayyeh OO
        • Franklin B
        • Kellner MJ
        • Joung J
        • Zhang F.
        RNA editing with CRISPR-Cas13.
        Science. 2017; 358: 1019-1027https://doi.org/10.1126/science.aaq0180
        • Ko W
        • Porter JJ
        • Sipple MT
        • Edwards KM
        • Lueck JD.
        Efficient suppression of endogenous CFTR nonsense mutations using anticodon-engineered transfer RNAs.
        Mol Ther Nucleic Acids. 2022; 28: 685-701https://doi.org/10.1016/j.omtn.2022.04.033
        • Ensinck M
        • Mottais A
        • Detry C
        • Leal T
        • Carlon MS.
        On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis.
        Front Pharmacol. 2021; 12662110https://doi.org/10.3389/fphar.2021.662110
        • Ramalho AS
        • Boon M
        • Proesmans M
        • Vermeulen F
        • Carlon MS
        • Boeck K.
        Assays of CFTR Function In Vitro, Ex Vivo and In Vivo.
        Int J Mol Sci. 2022; 23: 1437https://doi.org/10.3390/ijms23031437
        • Chowdary P
        • Shapiro S
        • Makris M
        • Evans G
        • Boyce S
        • Talks K
        • Dolan G
        • Reiss U
        • Phillips M
        • Riddell A
        • Peralta MR
        • Quaye M
        • Patch DW
        • Tuddenham E
        • Dane A
        • Watissée M
        • Long A
        • Nathwani A.
        Phase 1-2 Trial of AAVS3 Gene Therapy in Patients with Hemophilia B.
        N Engl J Med. 2022; 387: 237-247https://doi.org/10.1056/NEJMoa2119913
        • Hanson B
        • Wood MJA
        • Roberts TC.
        Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing.
        RNA Biol. 2021; 18: 1048-1062https://doi.org/10.1080/15476286.2021.1874161
        • Qasim W
        • Zhan H
        • Samarasinghe S
        • Adams S
        • Amrolia P
        • Stafford S
        • Butler K
        • Rivat C
        • Wright G
        • Somana K
        • Ghorashian S
        • Pinner D
        • Ahsan G
        • Gilmour K
        • Lucchini G
        • Inglott S
        • Mifsud W
        • Chiesa R
        • Peggs KS
        • Chan L
        • Farzeneh F
        • Thrasher AJ
        • Vora A
        • Pule M
        • Veys P.
        Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells.
        Sci Transl Med. 2017; 9: eaaj2013https://doi.org/10.1126/scitranslmed.aaj2013
        • Hendricks CL
        • Alessandrini M
        • Pepper MS
        Equitable access to cell and gene therapies in South Africa: opportunities and hurdles.
        Gene Ther. 2022; (Jan 8)https://doi.org/10.1038/s41434-021-00309-y
        • Maeder ML
        • Stefanidakis M
        • Wilson CJ
        • Baral R
        • Barrera LA
        • Bounoutas GS
        • Bumcrot D
        • Chao H
        • Ciulla DM
        • DaSilva JA
        • Dass A
        • Dhanapal V
        • Fennell TJ
        • Friedland AE
        • Giannoukos G
        • Gloskowski SW
        • Glucksmann A
        • Gotta GM
        • Jayaram H
        • Haskett SJ
        • Hopkins B
        • Horng JE
        • Joshi S
        • Marco E
        • Mepani R
        • Reyon D
        • Ta T
        • Tabbaa DG
        • Samuelsson SJ
        • Shen S
        • Skor MN
        • Stetkiewicz P
        • Wang T
        • Yudkoff C
        • Myer VE
        • Albright CF
        • Jiang H.
        Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10.
        Nat Med. 2019; 25: 229-233https://doi.org/10.1038/s41591-018-0327-9
        • Gillmore JD
        • Gane E
        • Taubel J
        • Kao J
        • Fontana M
        • Maitland ML
        • Seitzer J
        • O'Connell D
        • Walsh KR
        • Wood K
        • Phillips J
        • Xu Y
        • Amaral A
        • Boyd AP
        • Cehelsky JE
        • McKee MD
        • Schiermeier A
        • Harari O
        • Murphy A
        • Kyratsous CA
        • Zambrowicz B
        • Soltys R
        • Gutstein DE
        • Leonard J
        • Sepp-Lorenzino L
        • Lebwohl D.
        CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis.
        N Engl J Med. 2021; 385: 493-502https://doi.org/10.1056/NEJMoa2107454
      4. https://ir.vervetx.com/news-releases/news-release-details/verve-therapeutics-doses-first-human-investigational-vivo-base. Accessed August 2022.

        • Alton EW
        • Beekman JM
        • Boyd AC
        • Brand J
        • Carlon MS
        • Connolly MM
        • Chan M
        • Conlon S
        • Davidson HE
        • Davies JC
        • Davies LA
        • Dekkers JF
        • Doherty A
        • Gea-Sorli S
        • Gill DR
        • Griesenbach U
        • Hasegawa M
        • Higgins TE
        • Hironaka T
        • Hyndman L
        • McLachlan G
        • Inoue M
        • Hyde SC
        • Innes JA
        • Maher TM
        • Moran C
        • Meng C
        • Paul-Smith MC
        • Pringle IA
        • Pytel KM
        • Rodriguez-Martinez A
        • Schmidt AC
        • Stevenson BJ
        • Sumner-Jones SG
        • Toshner R
        • Tsugumine S
        • Wasowicz MW
        • Zhu J
        Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis.
        Thorax. 2017; 72: 137-147https://doi.org/10.1136/thoraxjnl-2016-208406
      5. https://www.respiratorygenetherapy.org.uk/copy-of-news202101 accessed August 2022

        • Suzuki S
        • Crane AM
        • Anirudhan V
        • Barillà C
        • Matthias N
        • Randell SH
        • Rab A
        • Sorscher EJ
        • Kerschner JL
        • Yin S
        • Harris A
        • Mendel M
        • Kim K
        • Zhang L
        • Conway A
        • Davis BR
        Highly Efficient Gene Editing of Cystic Fibrosis Patient-Derived Airway Basal Cells Results in Functional CFTR Correction.
        Mol Ther. 2020; 28: 1684-1695https://doi.org/10.1016/j.ymthe.2020.04.021
        • Vaidyanathan S
        • Baik R
        • Chen L
        • Bravo DT
        • Suarez CJ
        • Abazari SM
        • Salahudeen AA
        • Dudek AM
        • Teran CA
        • Davis TH
        • Lee CM
        • Bao G
        • Randell SH
        • Artandi SE
        • Wine JJ
        • Kuo CJ
        • Desai TJ
        • Nayak JV
        • Sellers ZM
        • Porteus MH.
        Targeted replacement of full-length CFTR in human airway stem cells by CRISPR-Cas9 for pan-mutation correction in the endogenous locus.
        Mol Ther. 2022; 30: 223-237https://doi.org/10.1016/j.ymthe.2021.03.023
        • Geurts MH
        • de Poel E
        • Amatngalim GD
        • Oka R
        • Meijers FM
        • Kruisselbrink E
        • van Mourik P
        • Berkers G
        • de Winter-de Groot KM
        • Michel S
        • Muilwijk D
        • Aalbers BL
        • Mullenders J
        • Boj SF
        • Suen SWF
        • Brunsveld JE
        • Janssens HM
        • Mall MA
        • Graeber SY
        • van Boxtel R
        • van der Ent CK
        • Beekman JM
        Clevers H. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank.
        Cell Stem Cell. 2020; 26 (e7): 503-510https://doi.org/10.1016/j.stem.2020.01.019
        • Krishnamurthy S
        • Traore S
        • Cooney AL
        • Brommel CM
        • Kulhankova K
        • Sinn PL
        • Newby GA
        • Liu DR
        • McCray PB.
        Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors.
        Nucleic Acids Res. 2021; 49: 10558-10572https://doi.org/10.1093/nar/gkab788
        • Jiang T
        • Henderson JM
        • Coote K
        • Cheng Y
        • Valley HC
        • Zhang XO
        • Wang Q
        • Rhym LH
        • Cao Y
        • Newby GA
        • Bihler H
        • Mense M
        • Weng Z
        • Anderson DG
        • McCaffrey AP
        • Liu DR
        Xue W. Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope.
        Nat Commun. 2020; 11: 1979https://doi.org/10.1038/s41467-020-15892-8
        • Jeong YK
        • Song B
        • Bae S.
        Current Status and Challenges of DNA Base Editing Tools.
        Mol Ther. 2020; 28: 1938-1952https://doi.org/10.1016/j.ymthe.2020.07.021
        • Kingwell K.
        Base editors hit the clinic.
        Nat Rev Drug Discov. 2022; 21: 545-547https://doi.org/10.1038/d41573-022-00124-z
        • Scholefield J
        • Harrison PT.
        Prime editing - an update on the field.
        Gene Ther. 2021; 28: 396-401https://doi.org/10.1038/s41434-021-00263-9
        • Geurts MH
        • de Poel E
        • Pleguezuelos-Manzano C
        • Oka R
        • Carrillo L
        • Andersson-Rolf A
        • Boretto M
        • Brunsveld JE
        • van Boxtel R
        • Beekman JM
        • Clevers H.
        Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids.
        Life Sci Alliance. 2021; 4e202000940https://doi.org/10.26508/lsa.202000940
        • Jiang T
        • Zhang XO
        • Weng Z
        • Xue W.
        Deletion and replacement of long genomic sequences using prime editing.
        Nat Biotechnol. 2022; 40: 227-234https://doi.org/10.1038/s41587-021-01026-y
        • Newby GA
        • Liu DR.
        In vivo somatic cell base editing and prime editing.
        Mol Ther. 2021; 29: 3107-3124https://doi.org/10.1016/j.ymthe.2021.09.002
        • Raguram A
        • Banskota S
        • Liu DR.
        Therapeutic in vivo delivery of gene editing agents.
        Cell. 2022; 185: 2806-2827https://doi.org/10.1016/j.cell.2022.03.045
        • Sanz DJ
        • Hollywood JA
        • Scallan MF
        • Harrison PT.
        Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA.
        PLoS One. 2017; 12e0184009https://doi.org/10.1371/journal.pone.0184009
        • Maule G
        • Casini A
        • Montagna C
        • Ramalho AS
        • De Boeck K
        • Debyser Z
        • Carlon MS
        • Petris G
        • Cereseto A.
        Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing.
        Nat Commun. 2019; b10: 3556https://doi.org/10.1038/s41467-019-11454-9
        • Oren YS
        • Irony-Tur Sinai M
        • Golec A
        • Barchad-Avitzur O
        • Mutyam V
        • Li Y
        • Hong J
        • Ozeri-Galai E
        • Hatton A
        • Leibson C
        • Carmel L
        • Reiter J
        • Sorscher EJ
        • Wilton SD
        • Kerem E
        • Rowe SM
        • Sermet-Gaudelus I
        • Kerem B
        Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10 kb C-to-T splicing mutation.
        J Cyst Fibros. 2021; 20: 865-875https://doi.org/10.1016/j.jcf.2021.06.003
        • Dang Y
        • van Heusden C
        • Nickerson V
        • Chung F
        • Wang Y
        • Quinney NL
        • Gentzsch M
        • Randell SH
        • Moulton HM
        • Kole R
        • Ni A
        • Juliano RL
        • Kreda SM.
        Enhanced delivery of peptide-morpholino oligonucleotides with a small molecule to correct splicing defects in the lung.
        Nucleic Acids Res. 2021; 49: 6100-6113https://doi.org/10.1093/nar/gkab488
      6. https://splisense.com/pipeline/spl84-23-1-program/Accessed August 2022

        • Urnov FD.
        Imagine CRISPR cures.
        Mol Ther. 2021; 29: 3103-3106https://doi.org/10.1016/j.ymthe.2021.10.019