Advertisement

Mucus aberrant properties in CF: Insights from cells and animal models

Published:September 15, 2022DOI:https://doi.org/10.1016/j.jcf.2022.08.019

      Highlights

      • CFTR is expressed primarily in ionocytes and in secretory and goblet cells.
      • MUC5B bundled strands from glands associate with MUC5AC threads on airway surface.
      • Lack of CFTR alters mucus properties and compromises mucociliary transport.
      • Submucosal gland secretions are critical for airway host defense.
      • Xenopus produces mucins much like mammalian MUC5B and MUC5AC.

      Abstract

      Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, is characterized by mucus accumulation in the lungs, the intestinal tract, and the pancreatic ducts. Mucins are high-molecular-weight glycoproteins that govern the biochemical and biophysical properties of mucus. In the CF lung, increased mucus viscoelasticity is associated with decreased mucociliary clearance and defects in host defense mechanisms. The link between defective ion channel and abnormal mucus properties has been investigated in studies involving cell and animal models. In this review article, we discuss recent progress toward understanding the different regions and cells that express CFTR in the airways and how mucus is produced and cleared from the lungs. In addition, we reflect on animal models that provided insights into the organization and the role of the mucin network and how mucus and antimicrobial activities act in concert to protect the lungs from invading pathogens.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cystic Fibrosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ridley C
        • Thornton DJ.
        Mucins: the frontline defence of the lung.
        Biochem Soc Trans. 2018; 46: 1099-1106
        • Okuda K
        • Chen G
        • Subramani DB
        • Wolf M
        • Gilmore RC
        • Kato T
        • et al.
        Localization of Secretory Mucins MUC5AC and MUC5B in Normal/Healthy Human Airways.
        Am J Respir Crit Care Med. 2018; 199: 715-727
        • Carpenter J
        • Wang Y
        • Gupta R
        • Li Y
        • Haridass P
        • Subramani DB
        • et al.
        Assembly and organization of the N-terminal region of mucin MUC5AC: Indications for structural and functional distinction from MUC5B.
        Proc Natl Acad Sci U S A. 2021; 118
        • Henderson AG
        • Ehre C
        • Button B
        • Abdullah LH
        • Cai LH
        • Leigh MW
        • et al.
        Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure.
        J Clin Invest. 2014; 124: 3047-3060
        • Hoang ON
        • Ermund A
        • Jaramillo AM
        • Fakih D
        • French CB
        • Flores JR
        • et al.
        Mucins MUC5AC and MUC5B are variably packaged in the same and in separate secretory granules.
        Am J Respir Crit Care Med. 2022;
        • Hoegger MJ
        • Fischer AJ
        • McMenimen JD
        • Ostedgaard LS
        • Tucker AJ
        • Awadalla MA
        • et al.
        Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis.
        Science. 2014; 345: 818-822
        • Ermund A
        • Meiss LN
        • Dolan B
        • Bahr A
        • Klymiuk N
        • Hansson GC.
        The mucus bundles responsible for airway cleaning are retained in cystic fibrosis and by cholinergic stimulation.
        Eur Respir J. 2018; 52
        • Morrison CB
        • Shaffer KM
        • Araba KC
        • Markovetz MR
        • Wykoff JA
        • Quinney NL
        • et al.
        Treatment of cystic fibrosis airway cells with CFTR modulators reverses aberrant mucus properties via hydration.
        Eur Respir J. 2022; : 59
        • Kato T
        • Radicioni G
        • Papanikolas MJ
        • Stoychev GV
        • Markovetz MR
        • Aoki K
        • et al.
        Mucus concentration-dependent biophysical abnormalities unify submucosal gland and superficial airway dysfunction in cystic fibrosis.
        Sci Adv. 2022; 8: eabm9718
        • Okuda K
        • Dang H
        • Kobayashi Y
        • Carraro G
        • Nakano S
        • Chen G
        • et al.
        Secretory cells dominate airway CFTR expression and function in human airway superficial epithelia.
        Am J Respir Crit Care Med. 2021; 203: 1275-1289
        • Montoro DT
        • Haber AL
        • Biton M
        • Vinarsky V
        • Lin B
        • Birket SE
        • et al.
        A revised airway epithelial hierarchy includes CFTR-expressing ionocytes.
        Nature. 2018; 560: 319-324
        • Plasschaert LW
        • Zilionis R
        • Choo-Wing R
        • Savova V
        • Knehr J
        • Roma G
        • et al.
        A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte.
        Nature. 2018; 560: 377-381
        • Thurman AL
        • Li X
        • Villacreses R
        • Yu W
        • Gong H
        • Mather SE
        • et al.
        A Single-Cell Atlas of Large and Small Airways at Birth in a Porcine Model of Cystic Fibrosis.
        Am J Respir Cell Mol Biol. 2022; 66: 612-622
        • Gustafsson JK
        • Ermund A
        • Ambort D
        • Johansson ME
        • Nilsson HE
        • Thorell K
        • et al.
        Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype.
        J Exp Med. 2012; 209: 1263-1272
        • Nystrom EEL
        • Martinez-Abad B
        • Arike L
        • Birchenough GMH
        • Nonnecke EB
        • Castillo PA
        • et al.
        An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function.
        Science. 2021; : 372
        • Quinton PM.
        Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis.
        Lancet. 2008; 372: 415-417
        • Morrison CB
        • Markovetz MR
        • Ehre C.
        Mucus, mucins, and cystic fibrosis.
        Pediatr Pulmonol. 2019; 54: S84-S96
        • Hill DB
        • Button B
        • Rubinstein M
        • Boucher RC.
        Physiology and pathophysiology of human airway Mucus.
        Physiol Rev. 2022;
        • Xie Y
        • Lu L
        • Tang XX
        • Moninger TO
        • Huang TJ
        • Stoltz DA
        • et al.
        Acidic submucosal gland pH and elevated protein concentration produce abnormal cystic fibrosis mucus.
        Dev Cell. 2020; 54 (488-500 e5)
        • Tang XX
        • Ostedgaard LS
        • Hoegger MJ
        • Moninger TO
        • Karp PH
        • McMenimen JD
        • et al.
        Acidic pH increases airway surface liquid viscosity in cystic fibrosis.
        J Clin Invest. 2016; 126: 879-891
        • Ehre C
        • Ridley C
        • Thornton DJ.
        Cystic fibrosis: an inherited disease affecting mucin-producing organs.
        Int J Biochem Cell Biol. 2014; 52: 136-145
        • Donaldson SH
        • Bennett WD
        • Zeman KL
        • Knowles MR
        • Tarran R
        • Boucher RC.
        Mucus clearance and lung function in cystic fibrosis with hypertonic saline.
        N Engl J Med. 2006; 354: 241-250
        • Elkins MR
        • Robinson M
        • Rose BR
        • Harbour C
        • Moriarty CP
        • Marks GB
        • et al.
        A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis.
        N Engl J Med. 2006; 354: 229-240
        • Trillo-Muyo S
        • Nilsson HE
        • Recktenwald CV
        • Ermund A
        • Ridley C
        • Meiss LN
        • et al.
        Granule-stored MUC5B mucins are packed by the non-covalent formation of N-terminal head-to-head tetramers.
        J Biol Chem. 2018; 293: 5746-5754
        • Ermund A
        • Meiss LN
        • Rodriguez-Pineiro AM
        • Bähr A
        • Nilsson HE
        • Trillo-Muyo S
        • et al.
        The normal trachea is cleaned by MUC5B mucin bundles from the submucosal glands coated with the MUC5AC mucin.
        Biochem Biophys Res Commun. 2017; 492: 331-337
        • Ermund A
        • Meiss LN
        • Dolan B
        • Jaudas F
        • Ewaldsson L
        • Bahr A
        • et al.
        Mucus threads from surface goblet cells clear particles from the airways.
        Respir Res. 2021; 22: 303
        • Fischer AJ
        • Pino-Argumedo MI
        • Hilkin BM
        • Shanrock CR
        • Gansemer ND
        • Chaly AL
        • et al.
        Mucus strands from submucosal glands initiate mucociliary transport of large particles.
        JCI Insight. 2019; 4
        • Ostedgaard LS
        • Moninger TO
        • McMenimen JD
        • Sawin NM
        • Parker CP
        • Thornell IM
        • et al.
        Gel-forming mucins form distinct morphologic structures in airways.
        Proc Natl Acad Sci U S A. 2017; 114: 6842-6847
        • Roy MG
        • Livraghi-Butrico A
        • Fletcher AA
        • McElwee MM
        • Evans SE
        • Boerner RM
        • et al.
        Muc5b is required for airway defence.
        Nature. 2014; 505: 412-416
        • Zabner J
        • Smith JJ
        • Karp PH
        • Widdicombe JH
        • Welsh MJ.
        Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelia in vitro.
        Mol Cell. 1998; 2: 397-403
        • Finkbeiner WE
        • Zlock LT
        • Morikawa M
        • Lao AY
        • Dasari V
        • Widdicombe JH.
        Cystic fibrosis and the relationship between mucin and chloride secretion by cultures of human airway gland mucous cells.
        Am J Physiol Lung Cell Mol Physiol. 2011; 301: L402-L414
        • Widdicombe JH
        • Borthwell RM
        • Hajighasemi-Ossareh M
        • Lachowicz-Scroggins ME
        • Finkbeiner WE
        • Stevens JE
        • et al.
        Chloride secretion by cultures of pig tracheal gland cells.
        Am J Physiol Lung Cell Mol Physiol. 2012; 302: L1098-L1106
        • Ballard ST
        • Trout L
        • Mehta A
        • Inglis SK.
        Liquid secretion inhibitors reduce mucociliary transport in glandular airways.
        Am J Physiol. 2002; 283: L329-L335
        • Joo NS
        • Saenz Y
        • Krouse ME
        • Wine JJ.
        Mucus secretion from single submucosal glands of pig. Stimulation by carbachol and vasoactive intestinal peptide.
        J Biol Chem. 2002; 277: 28167-28175
        • Dajani R
        • Zhang Y
        • Taft PJ
        • Travis SM
        • Starner TD
        • Olsen A
        • et al.
        Lysozyme secretion by submucosal glands protects the airway from bacterial infection.
        Am J Respir Cell Mol Biol. 2005; 32: 548-552
        • Ostedgaard LS
        • Price MP
        • Whitworth KM
        • Abou Alaiwa MH
        • Fischer AJ
        • Warrier A
        • et al.
        Lack of airway submucosal glands impairs respiratory host defenses.
        Elife. 2020; 9
        • Dubaissi E.
        A 'tad' of hope in the fight against airway disease.
        Biochem Soc Trans. 2020; 48: 2347-2357
        • Dubaissi E
        • Rousseau K
        • Lea R
        • Soto X
        • Nardeosingh S
        • Schweickert A
        • et al.
        A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis.
        Development. 2014; 141: 1514-1525
        • Dubaissi E
        • Rousseau K
        • Hughes GW
        • Ridley C
        • Grencis RK
        • Roberts IS
        • et al.
        Functional characterization of the mucus barrier on the Xenopus tropicalis skin surface.
        Proc Natl Acad Sci U S A. 2018; 115: 726-731
        • Ramsey BW
        • Davies J
        • McElvaney NG
        • Tullis E
        • Bell SC
        • Drevinek P
        • et al.
        A CFTR potentiator in patients with cystic fibrosis and the G551D mutation.
        N Engl J Med. 2011; 365: 1663-1672
        • Middleton PG
        • Mall MA
        • Drevinek P
        • Lands LC
        • McKone EF
        • Polineni D
        • et al.
        Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele.
        N Engl J Med. 2019; 381: 1809-1819
        • Rowe SM
        • Heltshe SL
        • Gonska T
        • Donaldson SH
        • Borowitz D
        • Gelfond D
        • et al.
        Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis.
        Am J Respir Crit Care Med. 2014; 190: 175-184
        • Birket SE
        • Davis JM
        • Fernandez-Petty CM
        • Henderson AG
        • Oden AM
        • Tang L
        • et al.
        Ivacaftor Reverses Airway Mucus Abnormalities in a Rat Model Harboring a Humanized G551D-CFTR.
        Am J Respir Crit Care Med. 2020; 202: 1271-1282