Predicting risk-adjusted incidence rates of methicillin-resistant Staphylococcus Aureus and Pseudomonas Aeruginosa in cystic fibrosis programs in the United States

Published:August 10, 2022DOI:



      Healthcare-associated transmission of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa occurs for people with cystic fibrosis (CF), but CF programs lack a process to monitor incidence rates (IRs). We assessed predictors of incident infections and created a model to determine risk-adjusted IRs for CF programs.


      Using the CF Foundation Patient Registry data for all patients from 2012 to 2015, coefficients for variables that predicted IRs were estimated. Hazard functions were then used to predict IRs of MRSA and P. aeruginosa for CF programs based on their patient and program characteristics. Predicted IRs were compared with observed IRs over multiple time intervals.


      Multiple patient and program characteristics were identified as predictors of observed IRs. Our model's predicted IRs closely aligned with observed IRs for most CF programs. Alarm values (defined as observed IR > 95% confidence interval of predicted IR) were found at 5.9%, 5.9%, 6.0% (adult, pediatric, affiliate) of programs for MRSA and 3.0%, 1.7%, 0.0% (adult, pediatric, affiliate) of programs for P. aeruginosa.


      We found patient and program characteristics that predicted MRSA and P. aeruginosa IRs. Our model accurately predicted risk-adjusted IRs of MRSA and P. aeruginosa. CF programs could use our model to monitor their IRs and potentially improve infection prevention and control.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Cystic Fibrosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Foundation C.F. Patient Registry 2015 Annual Report.

        • Li Z.
        • Kosorok M.R.
        • Farrell P.M.
        • Laxova A.
        • West S.E.
        • Green C.G.
        • et al.
        Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis.
        JAMA. 2005; 293: 581-588
        • Dasenbrook E.C.
        • Merlo C.A.
        • Diener-West M.
        • Lechtzin N.
        • Boyle M.P.
        Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis.
        Am J Respir Crit Care Med. 2008; 178: 814-821
        • Cox D.W.
        • Kelly C.
        • Rush R.
        • O'Sullivan N.
        • Canny G.
        • Linnane B.
        The impact of MRSA infection in the airways of children with cystic fibrosis; a case-control study.
        Ir Med J. 2011; 104: 305-308
        • Vanderhelst E.
        • De Meirleir L.
        • Verbanck S.
        • Piérard D.
        • Vincken W.
        • Malfroot A.
        Prevalence and impact on FEV(1) decline of chronic methicillin-resistant Staphylococcus aureus (MRSA) colonization in patients with cystic fibrosis. A single-center, case control study of 165 patients.
        J Cyst Fibros. 2012; 11: 2-7
        • Dasenbrook E.C.
        • Checkley W.
        • Merlo C.A.
        • Konstan M.W.
        • Lechtzin N.
        • Boyle M.P.
        Association between respiratory tract methicillin-resistant Staphylococcus aureus and survival in cystic fibrosis.
        JAMA. 2010; 303: 2386-2392
        • Ren C.L.
        • Morgan W.J.
        • Konstan M.W.
        • Schechter M.S.
        • Wagener J.S.
        • Fisher K.A.
        • et al.
        Presence of methicillin resistant Staphylococcus aureus in respiratory cultures from cystic fibrosis patients is associated with lower lung function.
        Pediatr Pulmonol. 2007; 42: 513-518
        • Psoter K.J.
        • De Roos A.J.
        • Wakefield J.
        • Mayer J.
        • Rosenfeld M
        Season is associated with Pseudomonas aeruginosa acquisition in young children with cystic fibrosis.
        Clin Microbiol Infect. 2013; 19: E483-E489
        • Psoter K.J.
        • Rosenfeld M.
        • De Roos A.J.
        • Mayer J.D.
        • Wakefield J.
        Differential geographical risk of initial Pseudomonas aeruginosa acquisition in young US children with cystic fibrosis.
        Am J Epidemiol. 2014; 179: 1503-1513
        • Psoter K.J.
        • DE Roos A.J.
        • Wakefield J.
        • Mayer J.D.
        • Bryan M.
        • Rosenfeld M
        Association of meteorological and geographical factors and risk of initial Pseudomonas aeruginosa acquisition in young children with cystic fibrosis.
        Epidemiol Infect. 2016; 144: 1075-1083
        • Collaco J.M.
        • McGready J.
        • Green D.M.
        • Naughton K.M.
        • Watson C.P.
        • Shields T.
        • et al.
        Effect of temperature on cystic fibrosis lung disease and infections: a replicated cohort study.
        PLoS ONE. 2011; 6: e27784
        • Saiman L.
        • Siegel J.
        • Foundation C.F.
        Infection control recommendations for patients with cystic fibrosis: microbiology, important pathogens, and infection control practices to prevent patient-to-patient transmission.
        Infect Control Hosp Epidemiol. 2003; 24: S6-52
        • Saiman L.
        • Siegel J.D.
        • LiPuma J.J.
        • Brown R.F.
        • Bryson E.A.
        • Chambers M.J.
        • et al.
        Infection prevention and control guideline for cystic fibrosis: 2013 update.
        Infect Control Hosp Epidemiol. 2014; 35: S1-S67
        • Saiman L.
        • Garber E.
        Infection control in cystic fibrosis: barriers to implementation and ideas for improvement.
        Curr Opin Pulm Med. 2009; 15: 626-631
        • Zhou J.
        • Garber E.
        • Saiman L.
        Survey of infection control policies for patients with cystic fibrosis in the United States.
        Am J Infect Control. 2008; 36: 220-222
        • Rioux C.
        • Grandbastien B.
        • Astagneau P.
        The standardized incidence ratio as a reliable tool for surgical site infection surveillance.
        Infect Control Hosp Epidemiol. 2006; 27: 817-824
        • Knapp E.A.
        • Fink A.K.
        • Goss C.H.
        • Sewall A.
        • Ostrenga J.
        • Dowd C.
        • et al.
        The cystic fibrosis foundation patient registry. Design and methods of a national observational disease registry.
        Ann Am Thorac Soc. 2016; 13: 1173-1179
        • Schechter M.S.
        • Fink A.K.
        • Homa K.
        • Goss C.H.
        The Cystic Fibrosis Foundation Patient Registry as a tool for use in quality improvement.
        BMJ Qual Saf. 2014; 23: i9-14
      2. United States Census Bureau [Available from:

        • Dasgupta S.
        • Goldberg Y.
        • Kosorok M.R.
        Feature elimination in kernel machines in moderately high dimensions.
        Ann Stat. 2019; 47: 497-526
        • Jennings M.T.
        • Dasenbrook E.C.
        • Lechtzin N.
        • Boyle M.P.
        • Merlo C.A.
        Risk factors for persistent methicillin-resistant Staphylococcus aureus infection in cystic fibrosis.
        J Cyst Fibros. 2017;
        • Oates G.R.
        • Harris W.T.
        • Rowe S.M.
        • Solomon G.M.
        • Dey S.
        • Zhu A.
        • et al.
        Area deprivation as a risk factor for methicillin-resistant Staphylococcus aureus infection in pediatric cystic fibrosis.
        Pediatr Infect Dis J. 2019; 38: e285-e2e9
        • Psoter K.J.
        • De Roos A.J.
        • Wakefield J.
        • Mayer J.D.
        • Rosenfeld M
        Seasonality of acquisition of respiratory bacterial pathogens in young children with cystic fibrosis.
        BMC Infect Dis. 2017; 17: 411
        • Kopp B.T.
        • Nicholson L.
        • Paul G.
        • Tobias J.
        • Ramanathan C.
        • Hayes D.
        Geographic variations in cystic fibrosis: an analysis of the U.S. CF Foundation Registry.
        Pediatr Pulmonol. 2015; 50: 754-762
        • Muhlebach M.S.
        • Jiang X.
        • Kosorok M.R.
        • Klein E.Y.
        • Saiman L.
        Longitudinal changes and regional variation of incident infection rates at cystic fibrosis centers, United States 2010-2016.
        J Cyst Fibros. 2021;
        • Muhlebach M.S.
        • Heltshe S.L.
        • Popowitch E.B.
        • Miller M.B.
        • Thompson V.
        • Kloster M.
        • et al.
        Multicenter observational study on factors and outcomes associated with various methicillin-resistant Staphylococcus aureus types in children with cystic fibrosis.
        Ann Am Thorac Soc. 2015; 12: 864-871
        • Rosenfeld M.
        • Emerson J.
        • McNamara S.
        • Thompson V.
        • Ramsey B.W.
        • Morgan W.
        • et al.
        Risk factors for age at initial Pseudomonas acquisition in the cystic fibrosis epic observational cohort.
        J Cyst Fibros. 2012; 11: 446-453
        • Abidin N.Z.
        • Gardner A.I.
        • Robinson H.L.
        • Haq I.J.
        • Thomas M.F.
        • Brodlie M.
        Trends in nontuberculous mycobacteria infection in children and young people with cystic fibrosis.
        J Cyst Fibros. 2020;
        • Caverly L.J.
        • Zimbric M.
        • Azar M.
        • Opron K.
        • LiPuma J.J.
        Cystic fibrosis airway microbiota associated with outcomes of nontuberculous mycobacterial infection.
        ERJ Open Res. 2021; 7
        • Gardner A.I.
        • McClenaghan E.
        • Saint G.
        • McNamara P.S.
        • Brodlie M.
        • Thomas M.F.
        Epidemiology of nontuberculous mycobacteria infection in children and young people with cystic fibrosis: analysis of UK Cystic Fibrosis Registry.
        Clin Infect Dis. 2019; 68: 731-737
        • Razvi S.
        • Quittell L.
        • Sewall A.
        • Quinton H.
        • Marshall B.
        • Saiman L.
        Respiratory microbiology of patients with cystic fibrosis in the United States, 1995 to 2005.
        Chest. 2009; 136: 1554-1560
        • Salsgiver E.L.
        • Fink A.K.
        • Knapp E.A.
        • LiPuma J.J.
        • Olivier K.N.
        • Marshall B.C.
        • et al.
        Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis.
        Chest. 2016; 149: 390-400
        • Singh S.B.
        • McLearn-Montz A.J.
        • Milavetz F.
        • Gates L.K.
        • Fox C.
        • Murry L.T.
        • et al.
        Pathogen acquisition in patients with cystic fibrosis receiving ivacaftor or lumacaftor/ivacaftor.
        Pediatr Pulmonol. 2019; 54: 1200-1208
        • Frost F.J.
        • Nazareth D.S.
        • Charman S.C.
        • Winstanley C.
        • Walshaw M.J.
        Ivacaftor is associated with reduced lung infection by key cystic fibrosis pathogens. A cohort study using national registry data.
        Ann Am Thorac Soc. 2019; 16: 1375-1382
        • Heltshe S.L.
        • Mayer-Hamblett N.
        • Burns J.L.
        • Khan U.
        • Baines A.
        • Ramsey B.W.
        • et al.
        Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor.
        Clin Infect Dis. 2015; 60: 703-712
        • Hisert K.B.
        • Heltshe S.L.
        • Pope C.
        • Jorth P.
        • Wu X.
        • Edwards R.M.
        • et al.
        Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections.
        Am J Respir Crit Care Med. 2017; 195: 1617-1628
        • Volkova N.
        • Moy K.
        • Evans J.
        • Campbell D.
        • Tian S.
        • Simard C.
        • et al.
        Disease progression in patients with cystic fibrosis treated with ivacaftor: data from national US and UK registries.
        J Cyst Fibros. 2020; 19: 68-79