Advertisement
Original Article| Volume 22, ISSUE 1, P31-38, January 2023

Cystic fibrosis related diabetes is not associated with maximal aerobic exercise capacity in cystic fibrosis: a cross-sectional analysis of an international multicenter trial

      Highlights

      • CFRD is not associated with VO2peak in people with CF.
      • Physical activity is not different between people with and without CFRD.
      • People with impaired glucose tolerance/CFRD have comparable VO2peak compared to those with normal glucose tolerance.

      Abstract

      Background

      Previous studies have reported differences in aerobic exercise capacity, expressed as peak oxygen uptake (VO2peak), between people with and without cystic fibrosis (CF) related diabetes (CFRD). However, none of the studies controlled for the potential influence of physical activity on VO2peak. We investigated associations between CFRD and VO2peak following rigorous control for confounders including objectively measured physical activity.

      Methods

      Baseline data from the international multicenter trial ACTIVATE-CF with participants ≥12 years performing up to 4 h per week of vigorous physical activity were used for this project. Multivariable models were computed to study associations between CFRD and VO2peak (mL.min−1) adjusting for a set of pre-defined covariates: age, sex, weight, forced expiratory volume in 1 s (FEV1), breathing reserve index, Pseudomonas aeruginosa infection, and physical activity (aerobic step counts from pedometry). Variables were selected based on their potential confounding effect on the association between VO2peak and CFRD.

      Results

      Among 117 randomized individuals, 103 (52% female) had a maximal exercise test and were included in the analysis. Participants with (n = 19) and without (n = 84) CFRD did not differ in FEV1, physical activity, nutritional status, and other clinical characteristics. There were also no differences in VO2peak (mL.min−1 or mL.kg−1.min−1 or% predicted). In the final multivariable model, all pre-defined covariates were significant predictors of VO2peak (mL.min−1), however CFRD [coefficient 82.1, 95% CI -69.5 to 233.8, p = 0.28] was not.

      Conclusions

      This study suggests no meaningful differences in VO2peak between people with and without CFRD given comparable levels of physical activity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cystic Fibrosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moran A.
        • Brunzell C.
        • Cohen R.C.
        • Katz M.
        • Marshall B.C.
        • Onady G.
        • et al.
        Clinical care guidelines for cystic fibrosis-related diabetes: a position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society.
        Diabetes Care. 2010; 33: 2697-2708https://doi.org/10.2337/dc10-1768
        • Moran A.
        • Dunitz J.
        • Nathan B.
        • Saeed A.
        • Holme B.
        • Thomas W.
        Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality.
        Diabetes Care. 2009; 32: 1626-1631https://doi.org/10.2337/dc09-0586
        • Kerem E.
        • Viviani L.
        • Zolin A.
        • MacNeill S.
        • Hatziagorou E.
        • Ellemunter H.
        • et al.
        Factors associated with FEV1 decline in cystic fibrosis: analysis of the ECFS patient registry.
        Eur Respir J. 2014; 43: 125-133https://doi.org/10.1183/09031936.00166412
        • Lewis C.
        • Blackman S.M.
        • Nelson A.
        • Oberdorfer E.
        • Wells D.
        • Dunitz J.
        • et al.
        Diabetes-related mortality in adults with cystic fibrosis. role of genotype and sex.
        Am J Respir Crit Care Med. 2015; 191: 194https://doi.org/10.1164/rccm.201403-0576OC
        • White H.
        • Pollard K.
        • Etherington C.
        • Clifton I.
        • Morton A.M.
        • Owen D.
        • et al.
        Nutritional decline in cystic fibrosis related diabetes: the effect of intensive nutritional intervention.
        J Cyst Fibros. 2009; 8: 179-185https://doi.org/10.1016/j.jcf.2008.12.002
        • Bridges N.
        • Rowe R.
        • Holt R.I.G.
        Unique challenges of cystic fibrosis-related diabetes.
        Diabet Med. 2018; (Online ahead of print)https://doi.org/10.1111/dme.13652
        • Radtke T.
        • Hebestreit H.
        • Gallati S.
        • Schneiderman J.E.
        • Braun J.
        • Stevens D.
        • et al.
        CFTR GENOtype and maximal exercise capacity in cystic fibrosis a cross-sectional study.
        Ann Am Thorac Soc. 2018; 15: 209-216https://doi.org/10.1513/AnnalsATS.201707-570OC
        • Causer A.J.
        • Shute J.K.
        • Cummings M.H.
        • Shepherd A.I.
        • Wallbanks S.R.
        • Allenby M.I.
        • et al.
        The implications of dysglycaemia on aerobic exercise and ventilatory function in cystic fibrosis.
        J Cyst Fibros. 2020; 19: 427-433https://doi.org/10.1016/j.jcf.2019.09.014
        • Pastre J.
        • Prevotat A.
        • Tardif C.
        • Langlois C.
        • Duhamel A.
        • Wallaert B.
        Determinants of exercise capacity in cystic fibrosis patients with mild-to-moderate lung disease.
        BMC Pulm Med. 2014; 14: 74https://doi.org/10.1186/1471-2466-14-74
        • Hebestreit H.
        • Kieser S.
        • Rudiger S.
        • Schenk T.
        • Junge S.
        • Hebestreit A.
        • et al.
        Physical activity is independently related to aerobic capacity in cystic fibrosis.
        Eur Respir J. 2006; 28: 734-739
        • Lands L.C.
        • Heigenhauser G.J.F.
        • Jones N.L.
        Analysis of factors limiting maximal exercise performance in cystic fibrosis.
        Clin Sci. 1992; 83: 391-397
        • Junge S.
        • Kueck M.
        • Tegtbur U.
        • Thon A.
        • Stein L.
        • Bartels J.
        Exercise capacity of adolescents with cystic fibrosis related diabetes.
        Ped Pulmonol. 2013; (Conference abstract): 360
        • Foster K.
        • Huang G.
        • Zhang N.
        • Crisalli J.
        • Chini B.
        • Amin R.
        • et al.
        Relationship between exercise capacity and glucose tolerance in cystic fibrosis.
        Pediatr Pulmonol. 2018; 53: 154-161https://doi.org/10.1002/ppul.23906
        • Tomlinson O.W.
        • Stoate A.L.E.
        • Dobson L.
        • Williams C.A.
        The effect of dysglycaemia on changes in pulmonary and aerobic function in cystic fibrosis.
        Front Physiol. 2022; 13
        • Burghard M.
        • Takken T.
        • Nap-van der Vlist M.M.
        • Nijhof S.L.
        • van der Ent C.K.
        • Heijerman H.G.M.
        • et al.
        Physiological predictors of cardiorespiratory fitness in children and adolescents with cystic fibrosis without ventilatory limitation.
        Ther Adv Respir Dis. 2022; 1617534666211070144https://doi.org/10.1177/17534666211070143
        • Hebestreit H.
        • Hulzebos E.H.J.
        • Schneiderman J.E.
        • Karila C.
        • Boas S.R.
        • Kriemler S.
        • et al.
        Cardiopulmonary exercise testing provides additional prognostic information in cystic fibrosis.
        Am J Respir Crit Care Med. 2019; 199: 987-995https://doi.org/10.1164/rccm.201806-1110OC
        • van de Weert-van Leeuwen P.B.
        • Slieker M.G.
        • Hulzebos H.J.
        • Kruitwagen C.L.
        • van der Ent C.K.
        Arets HG. Chronic infection and inflammation affect exercise capacity in cystic fibrosis.
        Eur Respir J. 2012; 39: 893-898https://doi.org/10.1183/09031936.00086211
        • Cox N.
        • Holland A.
        • Alison J.
        • Dwyer T
        Physical activity in cystic fibrosis related diabetes.
        Eur Respir J. 2018; 52: PA5429
        • Hebestreit H.
        • Kriemler S.
        • Schindler C.
        • Stein L.
        • Karila C.
        • Urquhart D.S.
        • et al.
        Effects of a partially supervised conditioning program in cystic fibrosis: an international multicenter randomized controlled trial (ACTIVATE-CF).
        Am J Respir Crit Care Med. 2022; 205: 330-339https://doi.org/10.1164/rccm.202106-1419OC
        • Hebestreit H.
        • Lands L.C.
        • Alarie N.
        • Schaeff J.
        • Karila C.
        • Orenstein D.M.
        • et al.
        Effects of a partially supervised conditioning programme in cystic fibrosis: an international multi-centre randomised controlled trial (ACTIVATE-CF): study protocol.
        BMC Pulm Med. 2018; 18: 31https://doi.org/10.1186/s12890-018-0596-6
        • Godfrey S.
        • Mearns M.
        Pulmonary function and response to exercise in cystic fibrosis.
        Arch Dis Child. 1971; 46: 144-151
        • Orenstein D.M.
        Assessment of exercise pulmonary function.
        in: Rowland TW Pediatric laboratory exercise testing clinical guidelines. Human Kinetics, Champaign1993: 141-163
        • Radtke T.
        • Crook S.
        • Kaltsakas G.
        • Louvaris Z.
        • Berton D.
        • Urquhart D.S.
        • et al.
        ERS Statement on Standardisation of Cardiopulmonary Exercise Testing in Chronic Lung Diseases.
        Eur Respir Rev. 2019; 28180101
        • Godfrey S.
        • Davies C.T.
        • Wozniak E.
        • Barnes C.A.
        Cardio-respiratory response to exercise in normal children.
        Clin Sci. 1971; 40: 419-431
        • Miller M.R.
        • Hankinson J.
        • Brusasco V.
        • Burgos F.
        • Casaburi R.
        • Coates A.
        • et al.
        Standardisation of spirometry.
        Eur Respir J. 2005; 26: 319-338https://doi.org/10.1183/09031936.05.00034805
        • Wanger J.
        • Clausen J.L.
        • Coates A.
        • Pedersen O.F.
        • Brusasco V.
        • Burgos F.
        • et al.
        Standardisation of the measurement of lung volumes.
        Eur Respir J. 2005; 26: 511-522https://doi.org/10.1183/09031936.05.00035005
        • Quanjer P.H.
        • Stanojevic S.
        • Cole T.J.
        • Baur X.
        • Hall G.L.
        • Culver B.H.
        • et al.
        Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations.
        Eur Respir J. 2012; 40: 1324-1343https://doi.org/10.1183/09031936.00080312
        • Lederer D.J.
        • Bell S.C.
        • Branson R.D.
        • Chalmers J.D.
        • Marshall R.
        • Maslove D.M.
        • et al.
        Control of confounding and reporting of results in causal inference studies. Guidance for authors from editors of respiratory, sleep, and critical care journals.
        Annals ATS. 2019; 16: 22-28https://doi.org/10.1513/AnnalsATS.201808-564PS
        • Greenland S.
        • Pearl J.
        • Robins J.M.
        Causal diagrams for epidemiologic research.
        Epidemiology. 1999; 10: 37-48
        • Tennant P.W.G.
        • Murray E.J.
        • Arnold K.F.
        • Berrie L.
        • Fox M.P.
        • Gadd S.C.
        • et al.
        Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations.
        Int J Epidemiol. 2021; 50: 620-632https://doi.org/10.1093/ije/dyaa213
        • Olesen H.V.
        • Drevinek P.
        • Gulmans V.A.
        • Hatziagorou E.
        • Jung A.
        • Mei-Zahav M.
        • et al.
        Cystic fibrosis related diabetes in Europe: prevalence, risk factors and outcome; Olesen et al.
        J Cyst Fibros. 2020; 19: 321-327https://doi.org/10.1016/j.jcf.2019.10.009
        • Lin Y.-.C.
        • Keenan K.
        • Gong J.
        • Panjwani N.
        • Avolio J.
        • Lin F.
        • et al.
        Cystic fibrosis–related diabetes onset can be predicted using biomarkers measured at birth.
        Genet Med. 2021; 23: 927-933https://doi.org/10.1038/s41436-020-01073-x
        • Savi D.
        • Di Paolo M.
        • Simmonds N.
        • Onorati P.
        • Internullo M.
        • Quattrucci S.
        • et al.
        Relationship between daily physical activity and aerobic fitness in adults with cystic fibrosis.
        BMC Pulm Med. 2015; 15: 59https://doi.org/10.1186/s12890-015-0036-9
        • Selvadurai H.C.
        • McKay K.O.
        • Blimkie C.J.
        • Cooper P.J.
        • Mellis C.M.
        • Van Asperen P.P.
        The relationship between genotype and exercise tolerance in children with cystic fibrosis.
        Am J Respir Crit Care Med. 2002; 165: 762-765
        • Kerem E.
        • Corey M.
        • Kerem B.S.
        • Rommens J.
        • Markiewicz D.
        • Levison H.
        • et al.
        The relation between genotype and phenotype in cystic fibrosis–analysis of the most common mutation (delta F508).
        N Engl J Med. 1990; 323: 1517-1522https://doi.org/10.1056/NEJM199011293232203
        • Nevill A.M.
        The appropriate use of scaling techniques in exercise physiology.
        Pediatr Exerc Sci. 1997; 9: 295-298
        • Warren R.E.
        Cystic fibrosis and insulin therapy: a reality check.
        Diabetic Medicine. 2019; 36: 1360-1364https://doi.org/10.1111/dme.13959
        • Colberg S.R.
        • Sigal R.J.
        • Fernhall B.
        • Regensteiner J.G.
        • Blissmer B.J.
        • Rubin R.R.
        • et al.
        Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement.
        Diabetes Care. 2010; 33: e147-e167https://doi.org/10.2337/dc10-9990
        • LaMonte M.J.
        • Blair S.N.
        • Church T.S.
        Physical activity and diabetes prevention.
        J Appl Physiol. 2005; 99: 1205-1213https://doi.org/10.1152/japplphysiol.00193.2005
        • Groenwold R.H.H.
        • Palmer T.M.
        • Tilling K.
        To adjust or not to adjust? When a “confounder” is only measured after exposure.
        Epidemiology. 2021; 32: 194-201https://doi.org/10.1097/EDE.0000000000001312
        • Middleton P.G.
        • Mall M.A.
        • Dřevínek P.
        • Lands L.C.
        • McKone E.F.
        • Polineni D.
        • et al.
        Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del Allele.
        N Engl J Med. 2019; 381: 1809-1819https://doi.org/10.1056/NEJMoa1908639
        • Heijerman H.G.M.
        • McKone E.F.
        • Downey D.G.
        • Van Braeckel E.
        • Rowe S.M.
        • Tullis E.
        • et al.
        Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial.
        Lancet. 2019; 394: 1940-1948https://doi.org/10.1016/S0140-6736(19)32597-8
        • Scully K.J.
        • Marchetti P.
        • Sawicki G.S.
        • Uluer A.
        • Cernadas M.
        • Cagnina R.E.
        • et al.
        The effect of elexacaftor/tezacaftor/ivacaftor (ETI) on glycemia in adults with cystic fibrosis.
        J Cyst Fibros. 2022; 21: 258-263https://doi.org/10.1016/j.jcf.2021.09.001