Advertisement

CFTR dysfunction and targeted therapies: A vision from non-cystic fibrosis bronchiectasis and COPD

  • Miguel Angel Martinez-Garcia
    Correspondence
    Corresponding author at: Pepartment of regeneration an cell therapy. Andalusian molecular biology and regenerative medicine medicine center (CABIMER)-CSIC-US-UPO, Spain.
    Affiliations
    Pneumology Department, Hospital Universitario y Politécnico la Fe de Valencia, Spain

    Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain
    Search for articles by this author
  • Jesús María Sierra-Párraga
    Affiliations
    Pepartment of regeneration an cell therapy. Andalusian molecular biology and regenerative medicine medicine center (CABIMER)-CSIC-US-UPO, Spain
    Search for articles by this author
  • Esther Quintana
    Affiliations
    Unidad Médico-Quirúrgica de Enfermedades Respiratorias. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Spain

    Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain
    Search for articles by this author
  • Jose Luis López-Campos
    Affiliations
    Unidad Médico-Quirúrgica de Enfermedades Respiratorias. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Spain

    Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain
    Search for articles by this author
      Although talking about cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction has traditionally been synonymous with talking about cystic fibrosis (CF) (even the name of the disease itself is included in the name of the molecule), it should be remembered that the term really refers to a continuous spectrum of alterations in the amount and/or function of CFTR, whose genetic basis is known in greater detail and explain, at least in part, the great heterogeneity of CF [
      • Diab Cáceres L
      • Girón Moreno RM
      • Caballero Sánchez-Robles P
      Cystic fibrosis: quality of life and radiological monitoring.
      ,
      • Sharma N
      • Cutting GR
      The genetics and genomics of cystic fibrosis.
      ,
      • Diab Cáceres L
      • Girón Moreno RM
      • García Castillo E
      • Pastor Sanz MT
      • Olveira C
      • García Clemente M
      • et al.
      Effect of sex differences on computed tomography findings in adults with cystic fibrosis: a multicenter study.
      ]. At the most severe end of this spectrum lies the loss of function in both copies of the CFTR gene that will cause severe CF while partial reductions in its activity (for example, due to the presence of a deleterious variant) could go unnoticed or have clinical consequences that cannot be classified under the concept of CF [
      • Bombieri C
      • Claustres M
      • De Boeck K
      • Derichs N
      • Dodge J
      • Girodon E
      • et al.
      Recommendations for the classification of diseases as CFTR-related disorders.
      ].

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cystic Fibrosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Diab Cáceres L
        • Girón Moreno RM
        • Caballero Sánchez-Robles P
        Cystic fibrosis: quality of life and radiological monitoring.
        Arch Bronconeumol (Engl Ed). 2020; https://doi.org/10.1016/j.arbres.2020.12.004
        • Sharma N
        • Cutting GR
        The genetics and genomics of cystic fibrosis.
        J Cyst Fibros. 2020; 19: S5-S9
        • Diab Cáceres L
        • Girón Moreno RM
        • García Castillo E
        • Pastor Sanz MT
        • Olveira C
        • García Clemente M
        • et al.
        Effect of sex differences on computed tomography findings in adults with cystic fibrosis: a multicenter study.
        Arch Bronconeumol (Engl Ed). 2021; https://doi.org/10.1016/j.arbres.2019.12.028
        • Bombieri C
        • Claustres M
        • De Boeck K
        • Derichs N
        • Dodge J
        • Girodon E
        • et al.
        Recommendations for the classification of diseases as CFTR-related disorders.
        J Cystic Fibrosis. 2011; 10: S86-S102
        • Çolak Y
        • Nordestgaard BG
        • Afzal S
        Morbidity and mortality in carriers of the cystic fibrosis mutation CFTR Phe508del in the general population.
        Eur Respir J. 2020; 562000558
        • Martinez-García MA
        • Villa C
        • Dobarganes Y
        • Girón R
        • Maíz L
        • García-Clemente M
        • Sibila O
        • et al.
        RIBRON: The Spanish online bronchiectasis registry. Characterization of the first 1912 patients.
        Arch Bronconeumol (Engl Ed). 2021; 57: 28-35
        • Gao YH
        • Guan WJ
        • Liu SX
        • Wang L
        • Cui JJ
        • Chen RC
        • et al.
        Aetiology of bronchiectasis in adults: A systematic literature review.
        Respirology. 2016; 21: 1376-1383
        • Fuschillo S
        • De Felice A
        • Balzano
        Mucosal inflammation in idiopathic bronchiectasis: cellular and molecular mechanisms.
        Eur Respir J. 2008; 31: 396-406
        • Martinez-Garcia MA
        • Posadas T
        • Sotgiu G
        • Blasi F
        • Saderi L
        • Aliberti S
        Repeteability of circulating eosinophil measures and inhaled corticosteroids effect in bronchiectasis. a post hoc analysis of a randomized clinical trial.
        Arch Bronconeumol (Engl Ed). 2020; 56: 681-683
        • Shoemark A
        • Shteinberg M
        • De Soyza A
        • Haworth C
        • Richardson H
        • Gao Y.
        Characterisation of eosinophilic bronchiectasis: a European multicohort study.
        Am J Respir Crit Care Med. 2022; https://doi.org/10.1164/rccm.202108-1889OC
        • Martinez-Garcia MA
        Bronchiectasis and eosinophils.
        Arch Bronconeumol. 2021; 57: 671-672
        • Posadas T
        • Oscullo G
        • Zaldivar E
        • Villa C
        • Dobarganes Y
        • Girón R
        • et al.
        C-reactive protein concentration in steady-state bronchiectasis: prognostic value of future severe exacerbations. Data from the spanish registry of bronchiectasis (RIBRON).
        Arch Bronconeumol (Engl Ed). 2021; 57: 21-27
        • Saleh AD
        • Chalmers JD
        • De Soyza A
        • Fardon TC
        • Koustas SO
        • Scott J
        The heterogeneity of systemic inflammation in bronchiectasis.
        Respir Med. 2017; 127: 33-39
        • Monsó E
        Look at the wood and not at the tree: the microbiome in chronic obstructive lung disease and cystic fibrosis.
        Arch Bronconeumol (Engl Ed). 2020; 56: 5-6
        • Araújo D
        • Shteinberg M
        • Aliberti S
        • Goeminne PC
        • Hill AT
        • Fardon TC
        The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis.
        Eur Respir J. 2018; 511701953
        • de la Rosa Carrillo D
        • López-Campos JL
        • Alcázar Navarrete B
        • Calle Rubio M
        • Cantón Moreno R
        • García-Rivero JL
        • et al.
        Consensus document on the diagnosis and treatment of chronic bronchial infection in chronic obstructive pulmonary disease.
        Arch Bronconeumol. 2020; 56: 651-664
        • Chen CL
        • Huang Y
        • Yuan JJ
        • Li HM
        • Han XR
        • Martinez-Garcia MA
        • de la Rosa- Carrillo D
        • Chen RC
        • Guan WJ
        • Zhong NS
        The roles of bacteria and viruses in bronchiectasis exacerbation: a prospective study.
        Arch Bronconeumol (Engl Ed). 2020; 56: 621-629
        • Flume PA
        • Chalmers JD
        • Olivier KN
        Advances in bronchiectasis: endotyping, genetics, microbiome and disease heterogeneity.
        Lancet. 2018; 392: 880-890
        • R Ayats Vidal
        • M Bosque García
        • M García González
        • Ó Asensio de la Cruz
        Bronchial infection due to pseudomonas aeruginosa in patients with cystic fibrosis diagnosed in neonatal screening.
        Arch Bronconeumol (Engl Ed). 2020; 56: 532-534
        • Hill AT
        • Sullivan AL
        • Chalmers JD
        • De Soyza A
        • Elborn JS
        • Floto RA
        • et al.
        British Thoracic Society Guideline for bronchiectasis in adults.
        Thorax. 2019; 74: 1-69
        • King PT
        • Freezer NJ
        • Holmes PW
        • et al.
        Role of CFTR mutations in adult bronchiectasis.
        Thorax. 2004; 59: 357-358
        • Bergougnoux A
        • Viart V
        • Miro J
        • et al.
        Should diffuse bronchiectasis still be considered a CFTR-related disorder?.
        J Cyst Fibros. 2015; 14: 646-653
        • Casals T
        • De-Garcia J
        • Gallego M
        • et al.
        Bronchiectasis in adult patients: an expression of heterozyosity for CFTR gene mutations?.
        Clin Genet. 2004; 65: 490-495
        • Girodon E
        • Cazeneuve C
        • Lebargy F
        • et al.
        CFTR gene mutation in adults with disseminated bronchiectasis.
        Eur J Hum Genet. 1997; 5: 149-155
        • Patel SD
        • Bono TR
        • Rowe SM
        • SAolomon GM
        CFTR targeted therapies: recent advances in cystic fibrosis and possibilities in other diseases of the airways.
        Eur Respir Rev. 2020; 29190068
        • Cadwallader KA
        • Uddin M
        • Condliffe AM
        • Cowburn AS
        • White JF
        • Skepper JN
        • et al.
        Effect of priming on activation and localization of phospholipase D-1 in human neutrophils.
        Eur J Biochem. 2004; 271: 2755-2764
        • Carrasco-Hernandez L
        • Quintana E
        • Calero C
        • Reinoso R
        • Ruiz B
        • Lopez-Campos JL
        Dysfunction in the cystic fibrosis transmembrane regulator in chronic obstructive pulmonary disease as a potential target for personalised medicine.
        Biomedicines. 2021; 9: 1437https://doi.org/10.3390/biomedicines9101437
        • Dransfield M
        • Rowe S
        • Vogelmeier CF
        • Wedzicha J
        • Criner GJ
        • Meilan KH
        • et al.
        Cystic fibrosis transmembrane conductance regulator: roles in chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med Vol. 2022; 205: 631-640
        • Rab A
        • Rowe SM
        • Raju SV
        • Bebok Z
        • Matalon S
        • Collawn JF
        Cigarette smoke and CFTR: implications in the pathogenesis of COPD.
        Am J Physiol Lung Cell Mol Physiol. 2013; 305: L530-L541
        • Soriano JB
        • Alfageme I
        • Miravitlles M
        • de Lucas P
        • Soler-Cataluña JJ
        • García-Río F
        • Casanova C
        • Rodríguez González-Moro JM
        • Cosío BG
        • Sánchez G
        • Ancochea J
        Prevalence and determinants of COPD in Spain: EPISCAN II.
        Arch Bronconeumol. 2021; 57: 61-69
        • Adeloye D
        • Song P
        • Zhu Y
        • Campbell H
        • Sheikh A
        • Rudan I
        • et al.
        Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis.
        Labcet Resp Med. 2022; https://doi.org/10.1016/S2213-2600(21)00511-7
        • Dragonieri S
        • Lacedonia D
        • Scioscia G
        • Palladino GP
        • Quaranta VN
        • Carratù P
        • Resta O
        • Foschino Barbaro MP
        • Carpagnano GE
        Assessment of induced sputum cellularity in COPD patients belonging to two different classes of air pollution exposure.
        Arch Bronconeumol. 2020; 56: 214-217
        • Ruano-Ravina A
        • Cameselle-Lago C
        • Torres-Durán M
        • Pando-Sandoval A
        • Dacal-Quintas R
        • Valdés-Cuadrado L
        • et al.
        Indoor radon exposure and COPD, synergic association? A multicentric, hospital-based case-control study in a radon-prone area.
        Arch Bronconeumol. 2021; 57: 630-636
        • Díaz-Peña R
        • Silva RS
        • Hosgood 3rd, HD
        • Jaime S
        • Miravitlles M
        • Olloquequi J
        HLA-DRB1 alleles are associated with COPD in a Latin American admixed population.
        Arch Bronconeumol. 2021; 57: 291-297
        • Janciauskiene S
        • DeLuca DS
        • Barrecheguren M
        • Welte T
        • Miravitlles M
        Scientific committee; participating sites and coordinators. Serum levels of Alpha1-antitrypsin and their relationship with COPD in the general Spanish population.
        Arch Bronconeumol. 2020; 56: 76-83
        • Miravitlles M
        • Calle M
        • Soler-Cataluña JJ
        GesEPOC 2021: one more step towards personalized treatment of COPD.
        Arch Bronconeumol. 2021; 57: 9-10
        • Soler-Cataluña JJ
        • Miralles C.
        Exacerbation syndrome in COPD: a paradigm shift.
        Arch Bronconeumol. 2021; 57: 246-248
        • Cosío B
        • Shafiek H
        • Verdú J
        • Fiorentino F
        • Valera JL
        • Martínez R
        • Romero S
        • Ramón L
        • Toledo-Pons N
        • Sala E.
        Implementation of an integrated care model for frequent-exacerbator COPD patients: a controlled prospective study.
        Arch Bronconeumol Arch Bronconeumol. 2021; 57: 577-583
        • Shi J
        • Li H
        • Yuan C
        • Luo M
        • Wei J
        • Liu X
        Cigarette smoke-induced acquired dysfunction of cystic fibrosis transmembrane conductance regulator in the pathogenesis of chronic obstructive pulmonary disease.
        Oxid Med Cell Longev. 2018; 20186567578
        • Clunes LA
        • Davies CM
        • Coakley RD
        • Aleksandrov AA
        • Henderson AG
        • Zeman KL
        • et al.
        Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration.
        Faseb J. 2012; 26: 533-545
        • Marklew AJ
        • Patel W
        • Moore PJ
        • Tan CD
        • Smith AJ
        • Sassano MF
        • et al.
        Cigarette smoke exposure induces retrograde trafficking of CFTR to the endoplasmic reticulum.
        Sci Rep. 2019; 9: 13655
        • Alexander NS
        • Blount A
        • Zhang S
        • Skinner D
        • Hicks SB
        • Chestnut M
        • et al.
        Cystic fibrosis transmembrane conductance regulator modulation by the tobacco smoke toxin acrolein.
        Laryngoscope. 2012; 122: 1193-1197
        • Hassan F
        • Xu X
        • Nuovo G
        • Killilea DW
        • Tyrrell J
        • Da Tan C
        • et al.
        Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels.
        Respir Res. 2014; 15: 69
        • Bodas M
        • Min T
        • Mazur S
        • Vij N
        Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema.
        J Immunol. 2011; 186: 602-613
        • Xu X
        • Huang H
        • Yin X
        • Fang H
        • Shen X
        Effect of lentivirus-mediated CFTR overexpression on oxidative stress injury and inflammatory response in the lung tissue of COPD mouse model.
        Biosci Rep. 2020; : 40
        • Cantin AM
        • Bilodeau G
        • Ouellet C
        • Liao J
        • Hanrahan JW
        Oxidant stress suppresses CFTR expression.
        Am J Physiol Cell Physiol. 2006; 290: C262-C270
        • Kunzi L
        • Easter M
        • Hirsch MJ
        • Krick S.
        Cystic fibrosis lung disease in the aging population.
        Front Pharmacol. 2021; 12601438
        • Pignatti PF
        • Bombieri C
        • Marigo C
        • Benetazzo M
        • Luisetti M
        Increased incidence of cystic fibrosis gene mutations in adults with disseminated bronchiectasis.
        Hum Mol Genet. 1995; 4: 635-639
        • Tzetis M
        • Efthymiadou A
        • Strofalis S
        • Psychou P
        • Dimakou A
        • Pouliou E
        • et al.
        CFTR gene mutations–including three novel nucleotide substitutions–and haplotype background in patients with asthma, disseminated bronchiectasis and chronic obstructive pulmonary disease.
        Hum Genet. 2001; 108: 216-221
        • Ramsey BW
        • Davies J
        • McElvaney NG
        • Tullis E
        • Bell SC
        • Drevinek P
        • et al.
        A CFTR potentiator in patients with cystic fibrosis and the G551D mutation.
        N Engl J Med. 2011; 365: 1663-1672
        • Middleton PG
        • Mall MA
        • Drevinek P
        • Lands LC
        • McKone EF
        • Polineni D
        • et al.
        Elexacaftor-Tezacaftor-Ivacaftor for cystic fibrosis with a single Phe508del Allele.
        N Engl J Med. 2019; 381: 1809-1819
        • Heijerman HGM
        • McKone EF
        • Downey DG
        • Van Braeckel E
        • Rowe SM
        • Tullis E
        • et al.
        Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial.
        Lancet. 2019; 394: 1940-1948
        • Bose SJ
        • Krainer G
        • Ng DRS
        • Schenkel M
        • Shishido H
        • Yoon JS
        Towards next generation therapies for cystic fibrosis: folding, function and pharmacology of CFTR.
        J Cyst Fibros. 2020; 19: S25-S32
      1. Clinical trials.gov [Last Access 24.04.2022]