Advertisement
Original Article| Volume 21, ISSUE 6, P959-966, November 2022

Mucus and mucus flake composition and abundance reflect inflammatory and infection status in cystic fibrosis

Published:April 15, 2022DOI:https://doi.org/10.1016/j.jcf.2022.04.008

      Highlights

      • Mucus flakes in CF BALF were larger and more abundant than flakes in normal BALF.
      • Mucin and DNA content were also elevated in CF BALF.
      • Insoluble CF flakes contained a greater proportion of mucins, which were mostly soluble in normal subjects.
      • MUC5B/MUC5AC ratio is altered in CF mucus flakes compared to normal subjects.
      • The biophysical properties of mucus flakes were also altered in CF flakes.

      Abstract

      Background

      Mucus hyperconcentration in cystic fibrosis (CF) lung disease is marked by increases in both mucin and DNA concentration. Additionally, it has been shown that half of the mucins present in bronchial alveolar lavage fluid (BALF) from preschool-aged CF patients are present in as non-swellable mucus flakes. This motivates us to examine the utility of mucus flakes, as well as mucin and DNA concentrations in BALF as markers of infection and inflammation in CF airway disease.

      Methods

      In this study, we examined the mucin and DNA concentration, as well as mucus flake abundance, composition, and biophysical properties in BALF from three groups; healthy adult controls, and two CF cohorts, one preschool aged and the other school aged. BALFs were characterized via refractometry, PicoGreen, immunofluorescence microscopy, particle tracking microrheology, and fluorescence image tiling.

      Results

      Mucin and DNA BALF concentrations increased progressively from healthy young adult controls to preschool-aged people and school-aged people with CF. Notably, mucin concentrations were increased in bronchoalveolar lavage fluid (BALF) from preschool-aged patients with CF prior to decreased pulmonary function. Infrequent small mucus flakes were identified in normal subjects. A progressive increase in the abundance of mucus flakes in preschool and school-aged CF patients was observed. Compositionally, MUC5B dominated flakes from normal subjects, whereas an increase in MUC5AC was observed in people with CF, reflected in a reduced flaked MUC5B/MUC5AC mucin ratio.

      Conclusion

      These findings suggest mucus composition and flake properties are useful markers of inflammatory and infection-based changes in CF airways.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cystic Fibrosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Button B.
        • Cai L.L.-H.
        • Ehre C.
        • Kesimer M.
        • Hill D.B.
        • Sheehan J.K.
        • et al.
        A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia.
        Science. 2012; 937: 937-941
        • Abdullah L.H.
        • Coakley R.
        • Webster M.J.
        • Zhu Y.
        • Tarran R.
        • Radicioni G.
        • et al.
        Mucin Production and Hydration Responses to Mucopurulent Materials in Normal vs. CF Airway Epithelia.
        Am J Respir Crit Care Med. 2018; 197: 481-491
        • Matsui H.
        • Grubb B.R.
        • Tarran R.
        • Randell S.H.
        • Gatzy J.T.
        • Davis C.W.
        • et al.
        Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease.
        Cell. 1998; 95: 1005-1015
        • Tarran R.
        • Grubb B.R.
        • Gatzy J.T.
        • Davis C.W.
        • Boucher R.C.
        The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition.
        J Gen Physiol. 2001; 118: 223-236
        • Tarran R.
        • Button B.
        • Boucher R.C.
        Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress.
        Annu Rev Physiol. 2006; 68: 543-561
        • Hill D.B.
        • Long R.F.
        • Kissner W.J.
        • Atieh E.
        • Garbarine I.C.
        • Markovetz M.R.
        • et al.
        Pathological mucus and impaired mucus clearance in cystic fibrosis patients result from increased concentration, not altered pH.
        Eur Respir J. 2018; 52
        • Henderson A.G.
        • Ehre C.
        • Button B.
        • Abdullah L.H.
        • Cai L.H.
        • Leigh M.W.
        • et al.
        Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure.
        J Clin Invest. 2014; 124: 3047-3060
        • Anderson W.H.
        • Coakley R.D.
        • Button B.
        • Henderson A.G.
        • Zeman K.L.
        • NE A.
        • et al.
        The relationship of mucus concentration (hydration) to mucus osmotic pressure and transport in chronic bronchitis.
        Am J Respir Crit Care Med. 2015; 192: 182-190
      1. Chen G., Neal W.K.O., Boucher R.C., Chen G., Sun L., Kato T., Okuda K., Martino M.B., Abzhanova A., Lin J.M., Gilmore R.C., Batson B.D., Neal Y.K.O., Volmer A.S., Dang H., Deng Y., Randell S.H., Button B., Livraghi-butrico A., Kesimer M., Ribeiro C.M.P., Neal W.K.O., Boucher R.C.. IL-1 b dominates the promucin secretory cytokine profile in cystic fibrosis Find the latest version: IL-1 β dominates the promucin secretory cytokine profile in cystic fibrosis. 2019.

        • Boucher R.C.
        Cystic fibrosis: a disease of vulnerability to airway surface dehydration.
        Trends Mol Med. 2007; 13: 231-240
        • Matsui H.
        • Wagner V.E.
        • Hill D.B.
        • Schwab U.E.
        • Rogers T.D.
        • Button B.
        • et al.
        A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms.
        Proc Natl Acad Sci. 2006; 103: 18131-18136
        • Boucher R.C.
        Muco-Obstructive Lung Diseases.
        N Engl J Med. 2019; 380: 1941-1953
        • Ramsey K.A.
        • Rosenow T.
        • Turkovic L.
        • Skoric B.
        • Banton G.
        • Adams A.M.
        • et al.
        Lung clearance index and structural lung disease on computed tomography in early cystic fibrosis.
        Am J Respir Crit Care Med. 2016; 193: 60-67
        • Rosenow T.
        • Oudraad M.C.
        • Murray C.P.
        • Turkovic L.
        • Kuo W.
        • de Bruijne M.
        • Ranganathan S.C.
        • Tiddens H.A.
        • Stick S.M.
        PRAGMA-CF. A Quantitative Structural Lung Disease Computed Tomography Outcome in Young Children with Cystic Fibrosis.
        Am J Respir Crit Care Med. 2015; 191: 1158-1165
        • Esther C.R.
        • Muhlebach M.S.
        • Ehre C.
        • Hill D.B.
        • Wolfgang M.C.
        • Kesimer M.
        • et al.
        Mucus accumulation in the lungs precedes structural changes and infection in children with cystic fibrosis.
        Sci Transl Med. 2019; 11: eaav3488
        • Rubinstein M.
        • Colby R.H.
        Polymer physics.
        Polym Int. 2003;
        • Kesimer M.
        • Ford A.A.
        • Ceppe A.
        • Radicioni G.
        • Cao R.
        • Davis C.W.
        • et al.
        Airway Mucin Concentration as a Marker of Chronic Bronchitis.
        N Engl J Med. 2017; 377: 911-922
        • Hill D.B.
        • Vasquez P.A.
        • Mellnik J.
        • McKinley S.A
        • Vose A.
        • Mu F.
        • et al.
        A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease.
        PLoS One. 2014; 9: 1-11
        • Duncan G.A.
        • Jung J.
        • Joseph A.
        • Thaxton A.L.
        • West N.E.
        • Boyle M.P.
        • Hanes J.
        • Suk J.S.
        Microstructural alterations of sputum in cystic fibrosis lung disease.
        JCI Insight. 2016; 1: 1-12
        • Lai S.K.
        • Wang Y.Y.
        • Wirtz D.
        • Hanes J.
        Micro- and macrorheology of mucus.
        Adv Drug Deliv Rev Elsevier B.V. 2009; 61: 86-100
        • Mott L.S.
        • Park J.
        • Murray C.P.
        • Gangell C.L.
        • De Klerk N.H.
        • Robinson P.J.
        • et al.
        Progression of early structural lung disease in young children with cystic fibrosis assessed using CT.
        Thorax. 2012; 67: 509-516
        • Esther C.R.
        • Turkovic L.
        • Rosenow T.
        • Muhlebach M.S.
        • Boucher R.C.
        • Ranganathan S.
        • et al.
        Metabolomic biomarkers predictive of early structural lung disease in cystic fibrosis.
        Eur Respir J. 2016; 48: 1612-1621
        • Ghio A.J.
        • Roggli V.L.
        • Soukup J.M.
        • Richards J.H.
        • Randell S.H.
        • Muhlebach M.S.
        Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients.
        J Cyst Fibros Elsevier B.V. 2013; 12: 390-398
        • Henderson A.G.
        • Anderson W.H.
        • Ceppe A.
        • Coakley R.D.
        • Button B.
        • NE A.
        • et al.
        Mucus Hydration in Subjects with Stable Chronic Bronchitis: a Comparison of Spontaneous and Induced Sputum.
        COPD J Chronic Obstr Pulm Dis Taylor & Francis. 2018; 15: 572-580
        • Ramsey K.A.
        • Chen A.C.H.
        • Radicioni G.
        • Lourie R.
        • Martin M.
        • Broomfield A.
        • et al.
        Airway mucus hyperconcentration in non–cystic fibrosis bronchiectasis.
        Am J Respir Crit Care Med. 2020; 201: 661-670
        • Middleton P.G.
        • Mall M.A.
        • Dřevínek P.
        • Lands L.C.
        • McKone E.F.
        • Polineni D.
        • et al.
        Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele.
        N Engl J Med. 2019; 381: 1809-1819
      2. Bouso J.M., O'Callaghan K., Planet P.J., Beck S.E.. Modulator Therapy May Improve Clearance of Nontuberculous Mycobacterial Infections. 2020; A5318 –A5318.

        • Rosenow T.
        • Oudraad M.C.
        • Murray C.P.
        • Turkovic L.
        • Kuo W.
        • de Bruijne M.
        • Ranganathan S.C.
        • Tiddens H.A.
        • Stick S.M.
        PRAGMA-CF. A Quantitative Structural Lung Disease Computed Tomography Outcome in Young Children with Cystic Fibrosis.
        Am J Respir Crit Care Med. 2015; 191: 1158-1165
        • Okuda K.
        • Chen G.
        • Subramani D.B.
        • Wolf M.
        • Gilmore R.C.
        • Kato T.
        • et al.
        Localization of Secretory Mucins MUC5AC and MUC5B in Normal/Healthy Human Airways.
        Am J Respir Crit Care Med. 2019; 199: 715-727
        • Abdullah L.H.
        • Evans J.R.
        • Wang T.T.
        • Ford A.A.
        • Makhov A.M.
        • Nguyen K.
        • Coakley R.D.
        • Griffith J.D.
        • Davis C.W.
        • Ballard S.T.
        • Kesimer M.
        Defective postsecretory maturation of MUC5B mucin in cystic fibrosis airways.
        JCI Insight. 2017; 2: 1-13
        • Yuan S.
        • Hollinger M.
        • Lachowicz-Scroggins M.E.
        • Kerr S.C.
        • Dunican E.M.
        • Daniel B.M.
        • et al.
        Oxidation increases mucin polymer cross-links to stiffen airway mucus gels.
        Sci Transl Med. 2015; 7 (276ra27)
        • Sturgess J.M.
        The mucous lining of major bronchi in the rabbit lung.
        Am Rev Respir Dis. 1977;
        • Iravani J.
        • Van As A.
        Mucus Transport in the Tracheobronchial Tree of Normal and Bronchitic Rats.
        J Pathol. 1972; 106: 81-93
        • Fischer A.J.
        • Pino-Argumedo M.I.
        • Hilkin B.M.
        • Shanrock C.R.
        • Gansemer N.D.
        • Chaly A.L.
        • et al.
        Mucus strands from submucosal glands initiate mucociliary transport of large particles.
        JCI Insight. 2019; 4
        • Ermund A.
        • Meiss L.N.
        • Rodriguez-Pineiro A.M.
        • Bähr A.
        • Nilsson H.E.
        • Trillo-Muyo S.
        • et al.
        The normal trachea is cleaned by MUC5B mucin bundles from the submucosal glands coated with the MUC5AC mucin.
        Biochem Biophys Res Commun. 2017; 492: 331-337
        • Weibel E.
        Morphometry of the human lung.
        Anesthesiology. 1965;
        • Bennett W.D.
        • Wu J.
        • Fuller F.
        • Balcazar J.R.
        • Zeman K.L.
        • Duckworth H.
        • et al.
        Duration of Action of Hypertonic Saline on Mucociliary Clearance in the Normal Lung.
        J Appl Physiol. 2015; (jap.00404.2014)
        • Radicioni G.
        • Ceppe A.
        • Ford A.A.
        • Alexis N.E.
        • Barr R.G.
        • Bleecker E.R.
        • et al.
        Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort.
        Lancet Respir Med Elsevier Ltd. 2021; 2600: 1-14
        • Abdullah L.H.
        • Coakley R.
        • Webster M.J.
        • Zhu Y.
        • Tarran R.
        • Radicioni G.
        • et al.
        Mucin production and hydration responses to mucopurulent materials in normal versus cystic fibrosis airway epithelia.
        Am J Respir Crit Care Med. 2018; 197: 481-491
        • Batson B.D.
        Airway Mucin Dynamics in Infection and Inflammation.
        University of North Caroline at Chapel Hill, 2019
        • Dwyer M.
        • Shan Q.
        • D’Ortona S.
        • Maurer R.
        • Mitchell R.
        • Olesen H.
        • et al.
        Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor.
        J Innate Immun. 2014; 6: 765-779
      3. Rubin B.K.. Mucus structure and properties in cystic fibrosis. 2007; 4–7.

        • Round A.N.
        • Berry M.
        • McMaster T.J.
        • Stoll S.
        • Gowers D.
        • Corfield A.P.
        • et al.
        Heterogeneity and persistence length in human ocular mucins.
        Biophys J. 2002; 83: 1661-1670
        • Shah P.I.
        • Bush A.
        • Canny G.J.
        • Colin A.A.
        • Fuchs H.J.
        • Geddes D.M.
        • et al.
        Recombinant human DNase I in cystic fibrosis patients with severe pulmonary disease: a short-term, double-blind study followed by six months open-label treatment.
        Eur Respir J. 1995; 8: 954-958
        • McCoy K.
        • Hamilton S.
        • Johnson C.
        Effects of 12-week administration of dornase alfa in patients with advanced cystic fibrosis lung disease.
        Chest. 1996; 110: 889-895