Advertisement

Effects of ivacaftor on systemic inflammation and the plasma proteome in people with CF and G551D

Published:April 16, 2022DOI:https://doi.org/10.1016/j.jcf.2022.03.012

      Highlights

      • Ivacaftor led to sustained reductions in serum HMGB-1 and calprotectin.
      • SAA and G-CSF decreased and IGF-1 increased 1 month after treatment initiation.
      • Proteomic analyses identified 9 proteins that changed significantly with ivacaftor.
      • Ivacaftor altered lipid digestion/transport and extracellular matrix organization proteins.
      • These changes lend insight into the extrapulmonary effects of CFTR modulation.

      Abstract

      Background

      Ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator for people with CF and the G551D mutation. We aimed to investigate the biology of CFTR modulation and systemic effects of CFTR restoration by examining changes in circulating measurements of inflammation and growth and novel proteins with ivacaftor treatment.

      Methods

      Blood samples from 64 CF subjects with G551D-CFTR were analyzed for inflammatory and growth-related proteins at baseline, 1 and 6 months after ivacaftor initiation. In 30 subjects, plasma was assayed for 1,322 proteins using the SomaScan proteomic platform at baseline and 6 months post-ivacaftor. Correlations with clinical outcomes were assessed.

      Measurements and Main Results

      Significant reductions in high mobility group box-1 protein (HMGB-1), calprotectin, serum amyloid A, and granulocyte colony-stimulating factor (G-CSF), and an increase in insulin-like growth factor (IGF-1) occurred 1 month after ivacaftor. This treatment effect was sustained at 6 months for HMGB-1 and calprotectin. Correcting for multiple comparisons in the proteomic analysis, 9 proteins (albumin, afamin, leptin, trypsin, pancreatic stone protein [PSP], pituitary adenylate cyclase-activating polypeptide-38, repulsive guidance molecule A [RGMA], calreticulin, GTPase KRas) changed significantly with ivacaftor. Proteins changing with treatment are involved in lipid digestion and transport and extracellular matrix organization biological processes. Reductions in calprotectin and G-CSF and increases in calreticulin, and RGMA correlated with improved lung function, while increasing IGF-1, leptin and afamin and decreasing PSP correlated with increased weight.

      Conclusions

      Ivacaftor led to changes in inflammatory, lipid digestion, and extracellular matrix proteins, lending insights into the extrapulmonary effects of CFTR modulation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cystic Fibrosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ramsey B.W.
        • Davies J.
        • McElvaney N.G.
        • Tullis E.
        • Bell S.C.
        • Drevinek P.
        • Griese M.
        • McKone E.F.
        • Wainwright C.E.
        • Konstan M.W.
        • Moss R.
        • Ratjen F.
        • Sermet-Gaudelus I.
        • Rowe S.M.
        • Dong Q.
        • Rodriguez S.
        • Yen K.
        • Ordonez C.
        • Elborn J.S.
        • Group V.X.S
        A CFTR potentiator in patients with cystic fibrosis and the G551D mutation.
        N Engl J Med. 2011; 365: 1663-1672
        • Davies J.C.
        • Wainwright C.E.
        • Canny G.J.
        • Chilvers M.A.
        • Howenstine M.S.
        • Munck A.
        • Mainz J.G.
        • Rodriguez S.
        • Li H.
        • Yen K.
        • Ordonez C.L.
        • Ahrens R.
        • Group V.X.S
        Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation.
        Am J Respir Crit Care Med. 2013; 187: 1219-1225
        • Rowe S.M.
        • Heltshe S.L.
        • Gonska T.
        • Donaldson S.H.
        • Borowitz D.
        • Gelfond D.
        • Sagel S.D.
        • Khan U.
        • Mayer-Hamblett N.
        • Van Dalfsen J.M.
        • Joseloff E.
        • Ramsey B.W.
        Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis.
        Am J Respir Crit Care Med. 2014; 190: 175-184
        • Harris J.K.
        • Wagner B.D.
        • Zemanick E.T.
        • Robertson C.E.
        • Stevens M.J.
        • Heltshe S.L.
        • Rowe S.M.
        • Sagel S.D.
        Changes in airway microbiome and inflammation with ivacaftor treatment in patients with cystic fibrosis and the G551D mutation.
        Ann Am Thorac Soc. 2020; 17: 212-220
        • Hisert K.B.
        • Heltshe S.L.
        • Pope C.
        • Jorth P.
        • Wu X.
        • Edwards R.M.
        • Radey M.
        • Accurso F.J.
        • Wolter D.J.
        • Cooke G.
        • Adam R.J.
        • Carter S.
        • Grogan B.
        • Launspach J.L.
        • Donnelly S.C.
        • Gallagher C.G.
        • Bruce J.E.
        • Stoltz D.A.
        • Welsh M.J.
        • Hoffman L.R.
        • McKone E.F.
        • Singh P.K.
        Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections.
        Am J Respir Cri Care Med. 2017; 195: 1617-1628
        • Jain R.
        • Baines A.
        • Khan U.
        • Wagner B.D.
        • Sagel S.D.
        Evaluation of airway and circulating inflammatory biomarkers for cystic fibrosis drug development.
        J Cyst Fibros. 2021; 20: 50-56
        • Sergeev V.
        • Chou F.Y.
        • Lam G.Y.
        • Hamilton C.M.
        • Wilcox P.G.
        • Quon B.S.
        The extrapulmonary effects of cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis.
        Ann Am Thorac Soc. 2020; 17: 147-154
        • Stallings V.A.
        • Sainath N.
        • Oberle M.
        • Bertolaso C.
        • Schall J.I.
        Energy balance and mechanisms of weight gain with ivacaftor treatment of cystic fibrosis gating mutations.
        J Pediatr. 2018; 201 (229-237.e224)
        • Stalvey M.S.
        • Pace J.
        • Niknian M.
        • Higgins M.N.
        • Tarn V.
        • Davis J.
        • Heltshe S.L.
        • Rowe S.M.
        Growth in prepubertal children with cystic fibrosis treated with ivacaftor.
        Pediatrics. 2017; : 139
        • Davies J.C.
        • Cunningham S.
        • Harris W.T.
        • Lapey A.
        • Regelmann W.E.
        • Sawicki G.S.
        • Southern K.W.
        • Robertson S.
        • Green Y.
        • Cooke J.
        • Rosenfeld M.
        Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study.
        Lancet Respirat Med. 2016; 4: 107-115
        • Rosenfeld M.
        • Wainwright C.E.
        • Higgins M.
        • Wang L.T.
        • McKee C.
        • Campbell D.
        • Tian S.
        • Schneider J.
        • Cunningham S.
        • Davies J.C.
        Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-arm study.
        Lancet Respirat Med. 2018; 6: 545-553
        • Ooi C.Y.
        • Syed S.A.
        • Rossi L.
        • Garg M.
        • Needham B.
        • Avolio J.
        • Young K.
        • Surette M.G.
        • Gonska T.
        Impact of CFTR modulation with ivacaftor on gut microbiota and intestinal inflammation.
        Sci Rep. 2018; 8: 17834
        • Bessonova L.
        • Volkova N.
        • Higgins M.
        • Bengtsson L.
        • Tian S.
        • Simard C.
        • Konstan M.W.
        • Sawicki G.S.
        • Sewall A.
        • Nyangoma S.
        • Elbert A.
        • Marshall B.C.
        • Bilton D
        Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor.
        Thorax. 2018; 73: 731-740
        • Kelly A.
        • De Leon D.D.
        • Sheikh S.
        • Camburn D.
        • Kubrak C.
        • Peleckis A.J.
        • Stefanovski D.
        • Hadjiliadis D.
        • Rickels M.R.
        • Rubenstein R.C.
        Islet hormone and incretin secretion in cystic fibrosis after four months of ivacaftor therapy.
        Am J Respir Crit Care Med. 2019; 199: 342-351
        • Sermet-Gaudelus I.
        • Delion M.
        • Durieu I.
        • Jacquot J.
        • Hubert D.
        Bone demineralization is improved by ivacaftor in patients with cystic fibrosis carrying the p.Gly551Asp mutation.
        J Cyst Fibros. 2016; 15: e67-e69
        • Gold L.
        • Ayers D.
        • Bertino J.
        • Bock C.
        • Bock A.
        • Brody E.N.
        • Carter J.
        • Dalby A.B.
        • Eaton B.E.
        • Fitzwater T.
        • Flather D.
        • Forbes A.
        • Foreman T.
        • Fowler C.
        • Gawande B.
        • Goss M.
        • Gunn M.
        • Gupta S.
        • Halladay D.
        • Heil J.
        • Heilig J.
        • Hicke B.
        • Husar G.
        • Janjic N.
        • Jarvis T.
        • Jennings S.
        • Katilius E.
        • Keeney T.R.
        • Kim N.
        • Koch T.H.
        • Kraemer S.
        • Kroiss L.
        • Le N.
        • Levine D.
        • Lindsey W.
        • Lollo B.
        • Mayfield W.
        • Mehan M.
        • Mehler R.
        • Nelson S.K.
        • Nelson M.
        • Nieuwlandt D.
        • Nikrad M.
        • Ochsner U.
        • Ostroff R.M.
        • Otis M.
        • Parker T.
        • Pietrasiewicz S.
        • Resnicow D.I.
        • Rohloff J.
        • Sanders G.
        • Sattin S.
        • Schneider D.
        • Singer B.
        • Stanton M.
        • Sterkel A.
        • Stewart A.
        • Stratford S.
        • Vaught J.D.
        • Vrkljan M.
        • Walker J.J.
        • Watrobka M.
        • Waugh S.
        • Weiss A.
        • Wilcox S.K.
        • Wolfson A.
        • Wolk S.K.
        • Zhang C.
        • Zichi D.
        Aptamer-based multiplexed proteomic technology for biomarker discovery.
        PLoS ONE. 2010; 5: e15004
        • DeBoer E.M.
        • Kroehl M.E.
        • Wagner B.D.
        • Accurso F.J.
        • Harris J.K.
        • Lynch D.A.
        • Sagel S.D.
        • Deterding R.R.
        Proteomic profiling identifies novel circulating markers associated with bronchiectasis in cystic fibrosis.
        Proteomics Clin Appl. 2017; 11
        • Fabregat A.
        • Sidiropoulos K.
        • Garapati P.
        • Gillespie M.
        • Hausmann K.
        • Haw R.
        • Jassal B.
        • Jupe S.
        • Korninger F.
        • McKay S.
        • Matthews L.
        • May B.
        • Milacic M.
        • Rothfels K.
        • Shamovsky V.
        • Webber M.
        • Weiser J.
        • Williams M.
        • Wu G.
        • Stein L.
        • Hermjakob H.
        • D'Eustachio P
        The reactome pathway Knowledgebase.
        Nucleic Acids Res. 2016; 44: D481-D487
        • Milacic M.
        • Haw R.
        • Rothfels K.
        • Wu G.
        • Croft D.
        • Hermjakob H.
        • D'Eustachio P.
        • Stein L
        Annotating cancer variants and anti-cancer therapeutics in reactome.
        Cancers. 2012; 4: 1180-1211
        • Benjamini Y.
        • Drai D.
        • Elmer G.
        • Kafkafi N.
        • Golani I.
        Controlling the false discovery rate in behavior genetics research.
        Behav Brain Res. 2001; 125: 279-284
        • Khatri P.
        • Sirota M.
        • Butte A.J.
        Ten years of pathway analysis: current approaches and outstanding challenges.
        PLoS Comput Biol. 2012; 8e1002375
        • Liou T.G.
        • Adler F.R.
        • Keogh R.H.
        • Li Y.
        • Jensen J.L.
        • Walsh W.
        • Packer K.
        • Clark T.
        • Carveth H.
        • Chen J.
        • Rogers S.L.
        • Lane C.
        • Moore J.
        • Sturrock A.
        • Paine 3rd, R.
        • Cox D.R.
        • Hoidal J.R
        Sputum biomarkers and the prediction of clinical outcomes in patients with cystic fibrosis.
        PLoS ONE. 2012; 7: e42748
        • Chirico V.
        • Lacquaniti A.
        • Leonardi S.
        • Grasso L.
        • Rotolo N.
        • Romano C.
        • Di Dio G.
        • Lionetti E.
        • David A.
        • Arrigo T.
        • Salpietro C.
        • La Rosa M
        Acute pulmonary exacerbation and lung function decline in patients with cystic fibrosis: high-mobility group box 1 (HMGB1) between inflammation and infection.
        Clin Microbiol Infect. 2015; 21 (368 e361-369)
        • Sagel S.D.
        • Wagner B.D.
        • Ziady A.
        • Kelley T.
        • Clancy J.P.
        • Narvaez-Rivas M.
        • Pilewski J.
        • Joseloff E.
        • Sha W.
        • Zelnick L.
        • Setchell K.D.R.
        • Heltshe S.L.
        • Muhlebach M.S.
        Utilizing centralized biorepository samples for biomarkers of cystic fibrosis lung disease severity.
        J Cyst Fibros. 2020; 19: 632-640
        • Gray R.D.
        • Imrie M.
        • Boyd A.C.
        • Porteous D.
        • Innes J.A.
        • Greening A.P.
        Sputum and serum calprotectin are useful biomarkers during CF exacerbation.
        J Cyst Fibros. 2010; 9: 193-198
        • Ratjen F.
        • Saiman L.
        • Mayer-Hamblett N.
        • Lands L.C.
        • Kloster M.
        • Thompson V.
        • Emmett P.
        • Marshall B.
        • Accurso F.
        • Sagel S.
        • Anstead M
        Effect of azithromycin on systemic markers of inflammation in patients with cystic fibrosis uninfected with pseudomonas aeruginosa.
        Chest. 2012; 142: 1259-1266
        • Reid P.A.
        • McAllister D.A.
        • Boyd A.C.
        • Innes J.A.
        • Porteous D.
        • Greening A.P.
        • Gray R.D.
        Measurement of serum calprotectin in stable patients predicts exacerbation and lung function decline in cystic fibrosis.
        Am J Respir Crit Care Med. 2015; 191: 233-236
        • Sagel S.D.
        • Thompson V.
        • Chmiel J.F.
        • Montgomery G.S.
        • Nasr S.Z.
        • Perkett E.
        • Saavedra M.T.
        • Slovis B.
        • Anthony M.M.
        • Emmett P.
        • Heltshe S.L.
        Effect of treatment of cystic fibrosis pulmonary exacerbations on systemic inflammation.
        Ann Am Thorac Soc. 2015; 12: 708-717
        • Tiringer K.
        • Treis A.
        • Fucik P.
        • Gona M.
        • Gruber S.
        • Renner S.
        • Dehlink E.
        • Nachbaur E.
        • Horak F.
        • Jaksch P.
        • Döring G.
        • Crameri R.
        • Jung A.
        • Rochat M.K.
        • Hörmann M.
        • Spittler A.
        • Klepetko W.
        • Akdis C.A.
        • Szépfalusi Z.
        • Frischer T.
        • Eiwegger T.
        A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection.
        Am J Respir Crit Care Med. 2013; 187: 621-629
        • Wheeler W.B.
        • Williams M.
        • Matthews Jr., W.J.
        • Colten H.R
        Progression of cystic fibrosis lung disease as a function of serum immunoglobulin G levels: a 5-year longitudinal study.
        J Pediatr. 1984; 104: 695-699
        • Proesmans M.
        • Els C.
        • Vermeulen F.
        • De Boeck K.
        Change in IgG and evolution of lung function in children with cystic fibrosis.
        J Cyst Fibros. 2011; 10: 128-131
        • Laursen E.M.
        • Juul A.
        • Lanng S.
        • Høiby N.
        • Koch C.
        • Müller J.
        • Skakkebaek N.E.
        Diminished concentrations of insulin-like growth factor I in cystic fibrosis.
        Arch Dis Child. 1995; 72: 494-497
        • Rogan M.P.
        • Reznikov L.R.
        • Pezzulo A.A.
        • Gansemer N.D.
        • Samuel M.
        • Prather R.S.
        • Zabner J.
        • Fredericks D.C.
        • McCray Jr., P.B.
        • Welsh M.J.
        • Stoltz D.A
        Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth.
        Proc Natl Acad Sci USA. 2010; 107: 20571-20575
        • Dieplinger H.
        • Dieplinger B.
        Afamin–A pleiotropic glycoprotein involved in various disease states.
        Clin Chim Acta. 2015; 446: 105-110
        • Benabdelkamel H.
        • Alamri H.
        • Okla M.
        • Masood A.
        • Abdel Jabar M.
        • Alanazi I.O.
        • Alfadda A.A.
        • Nizami I.
        • Dasouki M.
        • Abdel Rahman A.M
        Serum-based proteomics profiling in adult patients with cystic fibrosis.
        Int J Mol Sci. 2020; 21
        • Roberts J.M.
        • Dai D.L.Y.
        • Hollander Z.
        • Ng R.T.
        • Tebbutt S.J.
        • Wilcox P.G.
        • Sin D.D.
        • Quon B.S.
        Multiple reaction monitoring mass spectrometry to identify novel plasma protein biomarkers of treatment response in cystic fibrosis pulmonary exacerbations.
        J Cyst Fibros. 2018; 17: 333-340
        • Kronenberg F.
        • Kollerits B.
        • Kiechl S.
        • Lamina C.
        • Kedenko L.
        • Meisinger C.
        • Willeit J.
        • Huth C.
        • Wietzorrek G.
        • Altmann M.E.
        • Thorand B.
        • Melmer A.
        • Dähnhardt D.
        • Santer P.
        • Rathmann W.
        • Paulweber B.
        • Koenig W.
        • Peters A.
        • Adham I.M.
        • Dieplinger H.
        Plasma concentrations of afamin are associated with the prevalence and development of metabolic syndrome.
        Circulat Cardiovas Genet. 2014; 7: 822-829
        • Guimbellot J.S.
        • Baines A.
        • Paynter A.
        • Heltshe S.L.
        • VanDalfsen J.
        • Jain M.
        • Rowe S.M.
        • Sagel S.D.
        Long term clinical effectiveness of ivacaftor in people with the G551D CFTR mutation.
        J Cyst Fibros. 2020; : S1569-S1993
        • Stylianou C.
        • Galli-Tsinopoulou A.
        • Koliakos G.
        • Fotoulaki M.
        • Nousia-Arvanitakis S.
        Ghrelin and leptin levels in young adults with cystic fibrosis: relationship with body fat.
        J Cyst Fibros. 2007; 6: 293-296
        • Ahme M.L.
        • Ong K.K.
        • Thomson A.H.
        • Dunger D.B.
        Reduced gains in fat and fat-free mass, and elevated leptin levels in children and adolescents with cystic fibrosis.
        Acta Paediatr. 2004; 93: 1185-1191
        • Schmitt-Grohe S.
        • Hippe V.
        • Igel M.
        • von Bergmann K.
        • Posselt H.G.
        • Krahl A.
        • Smaczny C.
        • Wagner T.O.
        • Nikolaizik W.
        • Lentze M.J.
        • Zielen S
        Serum leptin and cytokines in whole blood in relation to clinical and nutritional status in cystic fibrosis.
        J Pediatr Gastroenterol Nutr. 2006; 43: 228-233
        • Cohen R.I.
        • Tsang D.
        • Koenig S.
        • Wilson D.
        • McCloskey T.
        • Chandra S.
        Plasma ghrelin and leptin in adult cystic fibrosis patients.
        J Cyst Fibros. 2008; 7: 398-402
        • Bederman I.R.
        • Pora G.
        • O'Reilly M.
        • Poleman J.
        • Spoonhower K.
        • Puchowicz M.
        • Perez A.
        • Erokwu B.O.
        • Rodriguez-Palacios A.
        • Flask C.A.
        • Drumm M.L.
        Absence of leptin signaling allows fat accretion in cystic fibrosis mice.
        Am J Physiol Gastrointestinal Liver Physiol. 2018; 315: G685-g698
        • Davies J.C.
        • Wainwright C.E.
        • Sawicki G.S.
        • Higgins M.N.
        • Campbell D.
        • Harris C.
        • Panorchan P.
        • Haseltine E.
        • Tian S.
        • Rosenfeld M.
        Ivacaftor in Infants Aged 4 to <12 Months With Cystic Fibrosis and a Gating Mutation: results of a 2-Part Phase 3 Clinical Trial.
        Am. J. Respir. Crit. Care Med. 2020;
        • Nichols A.L.
        • Davies J.C.
        • Jones D.
        • Carr S.B.
        Restoration of exocrine pancreatic function in older children with cystic fibrosis on ivacaftor.
        Paediatr Respir Rev. 2020; 35: 99-102
        • Forstner G.G.
        • Vesely S.M.
        • Durie P.R.
        Selective precipitation of 14kDa stone/thread proteins by concentration of pancreaticobiliary secretions: relevance to pancreatic ductal obstruction, pancreatic failure, and CF.
        J. Pediatr. Gastroenterol Nutr. 1989; 8: 313-320
        • Carrère J.
        • Guy-Crotte O.
        • Gaia E.
        • Figarella C.
        Immunoreactive pancreatic Reg protein in sera from cystic fibrosis patients with and without pancreatic insufficiency.
        Gut. 1999; 44: 545-551
        • Vaudry D.
        • Falluel-Morel A.
        • Bourgault S.
        • Basille M.
        • Burel D.
        • Wurtz O.
        • Fournier A.
        • Chow B.K.
        • Hashimoto H.
        • Galas L.
        • Vaudry H.
        Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery.
        Pharmacol Rev. 2009; 61: 283-357
        • Dérand R.
        • Montoni A.
        • Bulteau-Pignoux L.
        • Janet T.
        • Moreau B.
        • Muller J.M.
        • Becq F
        Activation of VPAC1 receptors by VIP and PACAP-27 in human bronchial epithelial cells induces CFTR-dependent chloride secretion.
        Br J Pharmacol. 2004; 141: 698-708
        • Hashimoto R.
        • Hashimoto H.
        • Shintani N.
        • Ohi K.
        • Hori H.
        • Saitoh O.
        • Kosuga A.
        • Tatsumi M.
        • Iwata N.
        • Ozaki N.
        • Kamijima K.
        • Baba A.
        • Takeda M.
        • Kunugi H.
        Possible association between the pituitary adenylate cyclase-activating polypeptide (PACAP) gene and major depressive disorder.
        Neurosci Lett. 2010; 468: 300-302
        • Lutfy K.
        • Shankar G.
        Emerging evidence for the role of pituitary adenylate cyclase-activating peptide in neuropsychiatric disorders.
        Prog Mol Biol Transl Sci. 2019; 167: 143-157
        • Talwalkar J.S.
        • Koff J.L.
        • Lee H.B.
        • Britto C.J.
        • Mulenos A.M.
        • Georgiopoulos A.M.
        Cystic fibrosis transmembrane regulator modulators: implications for the management of depression and anxiety in cystic fibrosis.
        Psychosomatics. 2017; 58: 343-354
        • McKinzie C.J.
        • Goralski J.L.
        • Noah T.L.
        • Retsch-Bogart G.Z.
        • Prieur M.B.
        Worsening anxiety and depression after initiation of lumacaftor/ivacaftor combination therapy in adolescent females with cystic fibrosis.
        J Cyst Fibros. 2017; 16: 525-527
        • Gaszner B.
        • Kormos V.
        • Kozicz T.
        • Hashimoto H.
        • Reglodi D.
        • Helyes Z.
        The behavioral phenotype of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus.
        Neuroscience. 2012; 202: 283-299
        • Ressler K.J.
        • Mercer K.B.
        • Bradley B.
        • Jovanovic T.
        • Mahan A.
        • Kerley K.
        • Norrholm S.D.
        • Kilaru V.
        • Smith A.K.
        • Myers A.J.
        • Ramirez M.
        • Engel A.
        • Hammack S.E.
        • Toufexis D.
        • Braas K.M.
        • Binder E.B.
        • May V.
        Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor.
        Nature. 2011; 470: 492-497
        • Mirakaj V.
        • Brown S.
        • Laucher S.
        • Steinl C.
        • Klein G.
        • Köhler D.
        • Skutella T.
        • Meisel C.
        • Brommer B.
        • Rosenberger P.
        • Schwab J.M.
        Repulsive guidance molecule-A (RGM-A) inhibits leukocyte migration and mitigates inflammation.
        Proc Natl Acad Sci USA. 2011; 108: 6555-6560
        • Mirakaj V.
        • Rosenberger P.
        Immunomodulatory Functions of Neuronal Guidance Proteins.
        Trends Immunol. 2017; 38: 444-456
        • Harada K.
        • Okiyoneda T.
        • Hashimoto Y.
        • Ueno K.
        • Nakamura K.
        • Yamahira K.
        • Sugahara T.
        • Shuto T.
        • Wada I.
        • Suico M.A.
        • Kai H.
        Calreticulin negatively regulates the cell surface expression of cystic fibrosis transmembrane conductance regulator.
        J Biol Chem. 2006; 281: 12841-12848
        • Gold L.I.
        • Eggleton P.
        • Sweetwyne M.T.
        • Van Duyn L.B.
        • Greives M.R.
        • Naylor S.M.
        • Michalak M.
        • Murphy-Ullrich J.E.
        Calreticulin: non-endoplasmic reticulum functions in physiology and disease.
        FASEB J. 2010; 24: 665-683
        • Cox A.D.
        • Fesik S.W.
        • Kimmelman A.C.
        • Luo J.
        • Der C.J.
        Drugging the undruggable RAS: mission possible?.
        Nat Rev Drug Discov. 2014; 13: 828-851
        • Papke B.
        • Der C.J.
        Drugging RAS: know the enemy.
        Science. 2017; 355: 1158-1163
        • Maisonneuve P.
        • Marshall B.C.
        • Knapp E.A.
        • Lowenfels A.B.
        Cancer risk in cystic fibrosis: a 20-year nationwide study from the United States.
        J Natl Cancer Inst. 2013; 105: 122-129