Association between elevated peripheral blood eosinophil count and respiratory outcomes in adults with cystic fibrosis

Si Cong Ye a, Sameer Desai b, Emma Karlsen c, Eugenie Kwong c, Pearce G. Wilcox a,c,d, Bradley S. Quon a,c,d,*

a Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
b School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
c Pacific Lung Research Centre, St. Paul’s Hospital, Vancouver, British Columbia, Canada
d Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada

ABSTRACT

Background: Elevated blood eosinophil counts are linked to worse outcomes in asthma and COPD, but have yet to be well characterized in CF. We hypothesized that higher stable visit blood eosinophil counts are associated with increased rates of lung function decline and pulmonary exacerbations (PEX).

Methods: We performed a retrospective analysis of adult CF patients (≥19 years) enrolled from 2012 to 2018 in a prospective cohort study focused on blood biomarkers. We included individuals with at least one year of follow-up post-stable visit blood draw and compared clinical characteristics by blood eosinophil count (<300 cells/μL vs. ≥300 cells/μL). We used multivariate mixed-effects linear regression to estimate annual change in ppFEV1. Multivariable poisson and linear regression models were used to estimate rate of PEx requiring IV antibiotics and to compare CF Respiratory Symptom Diary-Chronic Respiratory Infection Symptom Scores (CFSRD-CRISS), respectively.

Results: Of 109 patients, 17 (15.6%) had eosinophil counts ≥300 cells/μL. After adjustment for age, sex, BMI, and baseline ppFEV1, there was no association between high vs. low eosinophil group and rates of lung function decline (difference in slope −0.04%/y; 95% CI −1.5 to +1.4) or rates of PEx requiring IV antibiotics (IRR 1.46; 95% CI 0.75 to 2.65). The high eosinophil group had a higher mean CFSRD-CRISS score at stable visit (adjusted mean difference 9.3; 95% CI 2.9 to 16.0).

Conclusions: The high eosinophil group experienced increased respiratory symptoms, but the rates of lung function decline and PEx were comparable between groups.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

In cystic fibrosis (CF), chronic progressive lung disease is a key contributor to patient morbidity and is the leading cause of mortality [1]. There are a number of clinical factors that have been associated with lung function decline in CF, including female sex, airway microbiology (Pseudomonas aeruginosa, Burkholderia cepacia, MRSA), CF-related diabetes, and history of pulmonary exacerbations (PEX) [2]. In terms of biological markers, sputum neutrophil elastase predicts lung function decline and the development of bronchiectasis in CF, which suggests that neutrophil airway inflammation plays a central role in CF lung disease progression [3,4].

Similar to neutrophils, eosinophils are key effector cells of the immune system that can release cytotoxic granules when activated, which can contribute to airway inflammation and destruction [5]. To date, there has been limited evaluation of airway or systemic eosinophilic inflammation in CF. In a study by Koller et al., serum eosinophilic cationic protein, a measure of eosinophil activation, had a negative correlation with lung function and gas exchange parameters in CF [6]. Furthermore, in CF patients with chronic P. aeruginosa lung infection, immune responses are predominantly Th2-driven, and a negative correlation has been found between levels of Th2-associated cytokines and ppFEV1 in stable CF patients [7,8].

Circulating eosinophil count is an attractive biomarker in CF lung disease as it is readily available, extensively studied in other airway diseases, correlates well with airway eosinophilia in other airway conditions, and there is a plausible biological role for...
eosinophils in CF lung injury [6–11]. In this study we explored whether elevated blood eosinophil count would be indicative of lung disease progression in CF patients. Specifically, we hypothesized that elevated blood eosinophil levels, using cut-offs applied in asthma and COPD, would be predictive of an increased rate of lung function decline, pulmonary exacerbations, and more severe respiratory symptoms in adults with CF.

2. Methods

2.1. Study design and patient population

We conducted a retrospective analysis of adult CF patients (≥19 years) followed at the St. Paul’s Hospital Adult CF Clinic (Vancouver, Canada) who were prospectively enrolled in a biomarker study (“Biomarkers in CF”) between July 2012 and April 2018, specifically designed to identify blood biomarkers of exacerbations and lung disease progression [12]. Follow-up data were recorded until April 2019. Patients must have provided written informed consent, had a confirmed CF diagnosis based on sweat chloride testing and/or genotyping, provided at least 1 blood sample during a stable clinic visit, and must have had at least one year of follow-up post-stable visit blood sampling. We excluded patients who had a previously documented diagnosis of allergic bronchopulmonary aspergillosis (ABPA) or received oral antibiotics and/or systemic corticosteroids within two weeks prior to stable visit as this could alter eosinophil count.

The study was approved by the Research Ethics Board at St Paul’s Hospital, Vancouver, British Columbia, Canada (PHC–H18–03,015).

2.2. Study variables

Baseline clinical data was extracted from a combination of paper and electronic medical records. Data collected included: age, sex, CF genotype, weight, height, lung function and PExs in the year prior to the stable visit, sputum microbiology, CF-related comorbidities (i.e., pancreatic insufficiency, diabetes, sinus disease, and liver disease), medications, and respiratory symptoms 24 h prior to the stable visits measured with the CF Respiratory Symptom Diary-Chronic Respiratory Infection Symptom Scale (CFRSR-CRISs) [13]. A change in CFRSD-CRIS score of ≥11 represents a minimal clinically important difference [14].

Blood eosinophil counts were obtained from a stable clinic visit and each patient was categorized into high (≥300 cells/μL) or low (<300 cells/μL) eosinophil groups based on a cut-off established in the asthma and COPD literature and often used as a criterion to predict response to Th2 biologic therapy [15–17]. A stable clinic visit was defined as the patient not meeting the modified Fuchs criteria for an exacerbation and not currently receiving or requiring IV or oral antibiotic therapy [18]. When multiple stable clinic visits existed for an individual patient, the earliest visit that maximized follow-up time was chosen.

Lung function, based on Forced Expiratory Volume in one second (FEV₁) and expressed as a percent predicted (pFEV₁) using the GLI equation, was measured from stable visit to a minimum follow-up of one year and up to a maximum of three years. Lung function measurements calculated using the Hankinson equation were recalculated with the GLI equation using the rsipropackage in R [19]. Measurements after lung transplantation were excluded.

Patients were deemed to have a PEx if they required IV antibiotics (hospital or home) within one-year post-stable visit for increased respiratory symptoms and/or decreased lung function. To capture milder exacerbations, we used a separate composite outcome combining both PExs treated with IV and oral antibiotics. Both outcomes were expressed as counts.

2.3. Blood sample collection

As part of the “Biomarkers in CF” study, patients had peripheral venous blood samples drawn on stable clinic visits. Each whole blood sample was analyzed for complete blood counts (CBC) using the Abbott CELL-DYN Hematology Analyzer (Abbott, Illinois, USA) until 2015 and the ADVIA 2120i Hematology System (Siemens, Erlangen, Germany) afterwards.

2.4. Statistical analysis

Baseline clinical characteristics were summarized using simple descriptive statistics (i.e., median, counts, and proportions). Chi-squared test of independence, Fisher’s exact test (when expected counts less than 5), or the Kruskal-Wallis test were used for comparisons stratified by high and low eosinophil groups.

To estimate the rate of lung function decline of the blood eosinophil groups, an interaction between eosinophil group and time was included in the multivariate linear mixed-effects model. The multivariate model was adjusted for a priori selected covariates including age, sex, BMI, and baseline pPFEV₁. Mixed-effects regression models account for the correlated nature of repeated pPFEV₁ measures per patient by incorporating random intercepts following an unstructured correlation pattern using the lme4 R package [20]. In addition, we performed a sensitivity analysis for our lung function model using an eosinophil count cut-off of 400 cells/μL, also commonly used in the eosinophilic asthma literature [16,17]. A multivariable linear regression model was used to compare CFRSD-CRISs scores at stable visits between high and low eosinophil groups, adjusting for the aforementioned covariates. A multivariable poison regression model was employed to examine the relationship between eosinophil grouping and rate of PEx in the year following stable clinic visits, adjusted for the same covariates as well as number of PEx in the year prior to stable visit (treated with IV antibiotics only or with either IV or oral antibiotics to match the outcome variable).

We performed a secondary analysis with eosinophil count as a continuous predictor and rate of lung function decline as our outcome. We compared a linear regression model with our previous model treating eosinophil count as a categorical variable. Model fit was assessed using Akaike (AIC) and Bayesian information criteria (BIC).

Missing data was minimal and therefore complete case analysis was used for regression analyses. The level of statistical significance was set at P <0.05 for all statistical analyses, and all reported P-values reflect two-tailed tests. All analyses were conducted using R 4.1.0 statistical programming [21].

3. Results

3.1. Distribution of blood eosinophil counts

In total, 109 patients were included in the study. Of these patients, 17 (15.6%) had stable visit blood eosinophil counts ≥300 cells/μL and 92 (84.4%) had counts <300 cells/μL (Fig. 1). The median blood eosinophil count was 147 cells/μL (IQR 123). Using a higher cut-off, 9 (8.3%) had eosinophil counts ≥400 cells/μL and 100 (91.7%) had counts <400 cells/μL.

3.2. Baseline clinical characteristics

Compared to the low eosinophil group, the high eosinophil group was older (31.0 vs. 29.5 years), had more females (47.1% vs. 40.2%), but had less severe CF lung disease with a higher median baseline pPFEV₁ (80.7% vs. 78.2%; Table 1). The proportion of patients with P. aeruginosa lung infection was similar between groups.
(39.5% vs. 38.5%). More patients in the high eosinophil group were actively using inhaled corticosteroids at stable visit compared to the low eosinophil group (70.6% vs. 52.2%). One patient in each group was documented to have newly diagnosed ABPA during follow-up.

3.3. Baseline symptoms

Comparing symptoms noted by patients 24 h prior to stable visit (Table 2), the median CFRSD-CRISS score was higher in the high vs. low eosinophil group (41.0 vs. 29.0). Four patients in the low eosinophil group did not fully complete the self-reported questionnaires. The high eosinophil group had a higher proportion of individuals with difficulty breathing (47.1% vs. 14.1%), feeling tired (70.6% vs. 32.6%), chills or sweats (29.4% vs. 4.3%), and wheezing (35.3% vs. 9.8%). The relationship between eosinophil group and CFRSD-CRISS score was similar after adjustment (adjusted mean difference 9.3; 95% CI 2.9 to 16.0; p = 0.005).

3.4. Rate of lung function decline

Median lung function follow-up was 2.0 years (IQR 2.0) among all patients and included a total of 1014 lung function measurements. Overall, the mean change in ppFEV₁ for the study population was −1.9% per year (95% CI −1.4 to −2.4). With unadjusted regression analysis, we observed that the rate of lung function decline in the high eosinophil group was similar compared to the low eosinophil group (difference in slope between high and low eosinophil group −0.30%/y; 95% CI −1.8 to +1.2). After adjustment, the rates of lung function decline remained similar between groups (difference in slope −0.04%/y; 95% CI −1.5 to +1.4; Fig. 2). When a cut-off of 400 cells/μL was employed, the high eosinophil group again had a similar rate of lung function decline compared to the low eosinophil group (difference in slope −0.31%/y; 95% CI −2.3 to +1.7). In a linear model, eosinophil count as a continuous variable was not associated with rate of lung function decline after adjustment (Supplementary Table 1).
Table 2
Reported symptoms (based on CFRSD-CRISS) at stable visit.

<table>
<thead>
<tr>
<th>Symptoms in last 24h</th>
<th>Eos count <300 cells/μL (n = 88)</th>
<th>Eos count ≥300 cells/μL (n = 17)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFRSD-CRISS score</td>
<td>29.0 [14.0]</td>
<td>41.0 [10.0]</td>
<td>0.002</td>
</tr>
<tr>
<td>Difficulty breathing</td>
<td>13 (14.1)</td>
<td>8 (47.1)</td>
<td>0.005</td>
</tr>
<tr>
<td>Feverish</td>
<td>1 (1.1)</td>
<td>0 (0.0)</td>
<td>1.000</td>
</tr>
<tr>
<td>Tired</td>
<td>30 (32.6)</td>
<td>12 (70.6)</td>
<td>0.009</td>
</tr>
<tr>
<td>Chills or sweats</td>
<td>4 (4.3)</td>
<td>5 (29.4)</td>
<td>0.005</td>
</tr>
<tr>
<td>Cough</td>
<td>78 (84.8)</td>
<td>15 (88.2)</td>
<td>0.515</td>
</tr>
<tr>
<td>Cough up mucus</td>
<td>70 (76.1)</td>
<td>15 (88.2)</td>
<td>0.018</td>
</tr>
<tr>
<td>Chest tightness</td>
<td>11 (12.0)</td>
<td>5 (29.4)</td>
<td>0.128</td>
</tr>
<tr>
<td>Wheeze</td>
<td>9 (9.8)</td>
<td>6 (35.3)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Predicted ppFEV₁ measurements over time from the adjusted linear mixed-effect model for high and low eosinophil groups. All other variables in the model were held constant at their means for continuous covariates, and categorical covariates at their proportions.

3.5. Pulmonary exacerbations

In total, 43 out of 109 (46%) patients experienced at least one PEx treated with IV antibiotics and 77 (70.6%) experienced at least one PEx treated with IV or oral antibiotics during a year of follow-up. On unadjusted poisson regression analysis, both eosinophil groups had comparable rates of PEx requiring IV antibiotics in the first year (Incidence rate ratio 1.22; 95% CI 0.66 to 2.12; p = 0.498). This relationship was similar after adjusting for age, sex, BMI, baseline ppFEV₁, and number of PEx requiring IV antibiotics in the year prior to stable visit (IRR 1.46; 95% CI 0.75 to 2.65; p = 0.237). The results were again similar if we used PEx treated with IV or oral antibiotics as the outcome (adjusted IRR 1.17; 95% CI 0.77 to 1.74; p = 0.439).

4. Discussion

This study is the first to examine the association between blood eosinophil count and longitudinal disease outcomes in CF lung disease. We observed no association between high and low eosinophil groups with lung function decline (based on ppFEV₁) or rates of pulmonary exacerbations. However, high eosinophil count was independently associated with higher CFRSD-CRISS scores during stable visits.

Based on our findings, there may be a stronger role for neutrophil inflammation and a weaker role for eosinophilic inflammation in CF lung injury compared to sub-phenotypes of COPD and asthma. However, we observed that the high eosinophil group self-reported significantly more respiratory and constitutional symptoms. Specifically, they were more likely to experience difficulty breathing, wheezing, chills or sweats, and feeling tired 24 h before their stable visits. This does not seem to be explained by worse lung disease severity or history of PEx as the high eosinophil group had milder lung disease based on baseline FEV₁ and a lower proportion of patients who experienced a PEx in the year prior to their stable visit.

It is difficult to ascertain whether eosinophilic inflammation is contributing to more respiratory and constitutional symptoms or if both the observed symptoms and elevated eosinophil counts are indicative of a common subacute process. Two such contributing processes may be undiagnosed ABPA and asthma as both are associated with elevated peripheral blood eosinophil counts and can contribute to increased respiratory symptoms, including difficulty breathing and wheezing [22,23]. Supportive of this, there was a higher proportion of patients prescribed inhaled corticosteroids in the high eosinophil group compared to the low eosinophil group. However, based on chart review, only 1 patient in each group was diagnosed with ABPA in follow-up. ABPA and asthma are very challenging to diagnose in CF due to considerable overlap in clinical presentation with CF lung disease. Although we did not specifically explore the prevalence of asthma in our sample given the lack of standardized diagnostic criteria, it remains possible that undiagnosed asthma or ABPA may be responsible for increased symptom scores in the high eosinophil group.

Limitations to our study include a modest sample size, particularly for the high eosinophil group, which could affect the
power and precision of our statistical models. In addition, using eosinophil count from a single time point may lead to misclassification. Ideally, patients should be classified as having eosinophilia based on multiple measurements over time. Patients in our study had too few subsequent stable visits for this to be feasible, but this should be evaluated in future studies. A limitation regarding the CFRSDF-CRISS tool is that it has generally been validated for use in exacerbation settings and as a measure of change in symptoms over time rather than as a single outcome point. Another limitation is that we used peripheral blood eosinophil count as a surrogate for airway eosinophilia. Studies in COPD and asthma have demonstrated that peripheral blood eosinophils are well correlated with sputum eosinophils but it will be worth confirming this correlation specifically in the CF population [8,10].

The generalizability of our findings is limited by our single center design and focus on adult CF patients. Furthermore, few patients in our study used CFTR modulators, which may limit our study's applicability to populations in which these therapies are becoming more widely employed.

5. Conclusion

Our study found that CF patients with elevated blood eosinophil counts at stable visits reported more respiratory symptoms. However, we did not identify an association between elevated blood eosinophil counts and a greater rate of lung function decline or pulmonary exacerbations. Future studies should investigate these relationships in a larger cohort and if confirmed examine the effect of therapies targeting peripheral blood eosinophils to reduce respiratory symptoms.

Financial support

This research was funded by a British Columbia Lung Association Grant-in-Aid. BSIQ is supported by a Michael Smith Foundation for Health Research Scholar Award.

Declaration of Competing Interest

There are no financial disclosures or conflicts of interest for any of the authors related to this work.

CRediT authorship contribution statement

Si Cong Ye: Conceptualization, Methodology, Investigation, Formal analysis, Writing – original draft, Writing – review & editing. Sameer Desai: Methodology, Formal analysis, Writing – review & editing. Emma Karlsten: Data curation, Project administration, Writing – review & editing. Eugenie Kwong: Data curation, Project administration, Writing – review & editing. Pearce G. Wilcox: Project administration, Writing – review & editing. Bradley S. Quon: Supervision, Project administration, Conceptualization, Methodology, Writing – review & editing.

Acknowledgments

We would like to acknowledge and thank patients from the St. Paul’s Hospital Adult CF clinic for their study participation.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jcf.2022.03.009.

References