Advertisement

Evaluating the alginate oligosaccharide (OligoG) as a therapy for Burkholderia cepacia complex cystic fibrosis lung infection

Published:January 24, 2022DOI:https://doi.org/10.1016/j.jcf.2022.01.003

      Highlights

      • Alginate oligosaccharide OligoG shows favourable safety profile for inhalation in CF.
      • QoL summary scores showed minor relative improvement with OligoG treatment.
      • OligoG may have some effect in reducing Burkholderia spp. infection.
      • Rheology analysis showed a beneficial effect of OligoG on sputum viscosity.

      Abstract

      OligoG has previously shown potentiation of aztreonam against Burkholderia cepacia complex (Bcc) through biofilm disruption. A randomized, double-blind, placebo-controlled cross-over design was used to evaluate safety and efficacy of inhaled OligoG as a therapy for Bcc-infected CF patients taking aztreonam. Subjects received OligoG (1050 mg daily) or matching placebo for 28-days. Of 14 subjects completing the study, 8 showed a mean decrease in total bacterial CFU's (0.82 log10) after OligoG treatment. There was a reduction in mean Bcc CFU's (2.19 log10) after OligoG treatment but this was not statistically significant. Rheology analysis showed improvements in phase-angle after OligoG, but there was no statistically significant improvement in lung function parameters. Six out of 12 QoL summary scores showed relative improvement after OligoG treatment compared to placebo. There was a favourable safety profile for OligoG. Potential for reducing Bcc warrants further investigation of OligoG for the treatment of infection in CF.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cystic Fibrosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jin Y.
        • Zhou J.
        • Zhou J.
        • Hu M.
        • Zhang Q.
        • Kong N.
        • Ren H.
        • Liang L.
        • Yue J.
        Genome-based classification of Burkholderia cepacia complex provides new insight into its taxonomic status.
        Biol Direct. 2020; 15: 6https://doi.org/10.1186/s13062-020-0258-5
        • Horsley A.
        • Jones A.M.
        Antibiotic treatment for Burkholderia cepacia complex in people with cystic fibrosis experiencing a pulmonary exacerbation.
        Cochrane Database Syst Rev. 2012; 10CD009529
        • Festini F.
        • Buzzetti R.
        • Bassi C.
        • Braggion C.
        • Salvatore D.
        • Taccetti G.
        • Mastella G.
        Isolation measures for prevention of infection with respiratory pathogens in cystic fibrosis: a systematic review.
        J Hosp Infect. Sep 2006; 64: 1-6
        • Ryan
        • et al.
        Nebulised anti-pseudomonal antibiotics for cystic fibrosis (Review).
        Cochrane Database Syst Rev. 2003; (2003Art. No)CD001021
        • Rowbotham N.J.
        • Palser S.C.
        • Smith S.J.
        • Smyth A.R.
        Infection prevention and control in cystic fibrosis: a systematic review of interventions.
        Expert Rev Respir Med. May 2019; 13 (Epub 2019 Mar 26): 425-434https://doi.org/10.1080/17476348.2019.1595594
        • Drevinek P.
        • Mahenthiralingam E.
        Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence.
        Clin Microbiol Infect. 2010; 16: 821-830
        • Frost F.
        • Shaw M.
        • Nazareth D.
        Antibiotic therapy for chronic infection with Burkholderia cepacia complex in people with cystic fibrosis.
        Cochrane Database Syst Rev. 2019 Jun 13; 6CD013079https://doi.org/10.1002/14651858.CD013079.pub2
        • Lynch 3rd, J.P.
        Burkholderia cepacia complex: impact on the cystic fibrosis lung lesion.
        Semin Respir Crit Care Med. Oct 2009; 30 (Epub 2009 Sep 16): 596-610
        • Kenna D.T.D.
        • Lilley D.
        • Coward A.
        • Martin K.
        • Perry C.
        • Pike R.
        • Hill R.
        • Turton J.F.
        Prevalence of Burkholderia species, including members of Burkholderia cepacia complex, among UK cystic and non-cystic fibrosis patients.
        J Med Microbiol. 2017; 66: 490-501
        • Rhodes K.A.
        • Schweizer H.P.
        Antibiotic resistance in Burkholderia species.
        Drug Resist Updat. 2016; 28: 82-90https://doi.org/10.1016/j.drup.2016.07.003
        • Frangolias D.D.
        • Mahenthiralingam E.
        • Rae S.
        • Raboud J.M.
        • Davidson A.G.
        • Wittmann R.
        • Wilcox P.G.
        Burkholderia cepacia in cystic fibrosis. Variable disease course.
        Am J Respir Crit Care Med. 1999; 160: 1572-1577
        • Ermund A.
        • Recktenwald C.V.
        • Skjåk-Braek G.
        • Meiss L.N.
        • Onsøyen E.
        • Rye P.D.
        • Dessen A.
        • Myrset A.H.
        • Hansson G.C.
        OligoG CF-5/20 normalizes cystic fibrosis mucus by chelating calcium.
        Clin Exp Pharmacol Physiol. Jun 2017; 44: 639-647
        • Vitko M.
        • Valerio D.M.
        • Rye P.D.
        • Onsøyen E.
        • Myrset A.H.
        • Dessen A.
        • Drumm M.L.
        • Hodges C.A.
        A novel guluronate oligomer improves intestinal transit and survival in cystic fibrosis mice.
        J Cyst Fibros. Nov 2016; 15: 745-751
        • Pritchard M.F.
        • Oakley J.L.
        • Brilliant C.D.
        • et al.
        Mucin structural interactions with an alginate oligomer mucolytic in cystic fibrosis sputum.
        Vib Spectrosc. 2019; 103102932https://doi.org/10.1016/j.vibspec.2019.102932
        • van Koningsbruggen-Rietschel S
        • Davies J.C.
        • Pressler T
        • et al.
        Inhaled dry powder alginate oligosaccharide in cystic fibrosis: a randomised, double-blind, placebo-controlled, crossover phase 2b study.
        ERJ Open Res. 2020; 6(4)00132-2020https://doi.org/10.1183/23120541.00132-2020
        • Nordgård C.T.
        • Nonstad U.
        • Olderøy M.Ø.
        • Espevik T.
        • Draget K.I.
        Alterations in mucus barrier function and matrix structure induced by guluronate oligomers.
        Biomacromolecules. 2014 Jun 9; 15: 2294-2300
        • Nordgård C.T.1.
        • Draget K.I.
        Oligosaccharides as modulators of rheology in complex mucous systems.
        Biomacromolecules. 2011 Aug 8; 12 (Epub 2011 Jul 18): 3084-3090https://doi.org/10.1021/bm200727c
        • Pritchard M.F.
        • Powell L.C.
        • Menzies G.E.
        • Lewis P.D.
        • Hawkins K.
        • Wright C.
        • Doull I.
        • Walsh T.R.
        • Onsøyen E.
        • Dessen A.
        • Myrvold R.
        • Rye P.D.
        • Myrset A.H.
        • Stevens H.N.
        • Hodges L.A.
        • MacGregor G.
        • Neilly J.B.
        • Hill K.E.
        • Thomas D.W.
        A new class of safe oligosaccharide polymer therapy to modify the mucus barrier of chronic respiratory disease.
        Mol Pharm. 2016 Mar 7; 13 (Epub 2016 Feb 16): 863-872https://doi.org/10.1021/acs.molpharmaceut.5b00794
        • Kahn S.
        • Tøndervik A.
        • Sletta H.
        • Klinkenberg G.
        • Emanuel C.
        • Onsøyen E.
        • Myrvold R.
        • Howe R.A.
        • Walsh T.R.
        • Hill K.E.
        • Thomas D.W.
        Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics.
        Antimicrob Agents Chemother. Oct 2012; 56: 5134-5141
        • Powell L.C.
        • Pritchard M.F.
        • Ferguson E.L.
        • Powell K.A.
        • Patel S.U.
        • Rye P.D.
        • Sakellakou S.M.
        • Buurma N.J.
        • Brilliant C.D.
        • Copping J.M.
        • Menzies G.E.
        • Lewis P.D.
        • Hill K.E.
        • Thomas D.W.
        Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides.
        NPJ Biofilms Microbiomes. 2018 Jun 29; 4 (eCollection 2018): 13https://doi.org/10.1038/s41522-018-0056-3
        • Hengzhuang W.
        • Song Z.
        • Ciofu O.
        • Onsøyen E.
        • Rye P.D.
        • Høiby N.
        OligoG CF-5/20 disruption of mucoid pseudomonas aeruginosa biofilm in a murine lung infection model.
        Antimicrob Agents Chemother. 2016 Apr 22; 60: 2620-2626
        • Tøndervik A.
        • Sletta H.
        • Klinkenberg G.
        • Emanuel C.
        • Powell L.C.
        • Pritchard M.F.
        • Khan S.
        • Craine K.M.
        • Onsøyen E.
        • Rye P.D.
        • Wright C.
        • Thomas D.W.
        • Hill K.E.
        Alginate oligosaccharides inhibit fungal cell growth and potentiate the activity of antifungals against Candida and Aspergillus spp.
        PLoS ONE. 2014 Nov 19; 9 (2014)e112518
        • Pritchard M.F.
        • Jack A.A.
        • Powell L.C.
        • Sadh H.
        • Rye P.D.
        • Hill K.E.
        • Thomas D.W.
        Alginate oligosaccharides modify hyphal infiltration of Candida albicans in an in vitro model of invasive human candidosis.
        J Appl Microbiol. Sep 2017; 123: 625-636
        • Pritchard M.F.
        • Powell L.C.
        • Jack A.A.
        • Powell K.
        • Beck K.
        • Florance H.
        • Forton J.
        • Rye P.D.
        • Dessen A.
        • Hill K.E.
        • Thomas D.W.
        A low-molecular-weight alginate oligosaccharide disrupts pseudomonal microcolony formation and enhances antibiotic effectiveness.
        Antimicrob Agents Chemother. 2017 Aug 24; 61
        • Jack A.A.
        • Khan S.
        • Powell L.C.
        • Pritchard M.F.
        • Beck K.
        • Sadh H.
        • Sutton L.
        • Cavaliere A.
        • Florance H.
        • Rye P.D.
        • Thomas D.W.
        • Hill K.E.
        Alginate oligosaccharide-induced modification of the lasI-lasR and rhlI-rhlR quorum-sensing systems in pseudomonas aeruginosa.
        Antimicrob Agents Chemother. 2018 Apr 26; 62 (pii): e02317-e02318https://doi.org/10.1128/AAC.02318-17
        • Powell L.C.
        • Pritchard M.F.
        • Emanuel C.
        • Onsøyen E.
        • Rye P.D.
        • Wright C.J.
        • Hill K.E.
        • Thomas D.W.
        A nanoscale characterization of the interaction of a novel alginate oligomer with the cell surface and motility of Pseudomonas aeruginosa.
        Am J Respir Cell Mol Biol. Mar 2014; 50: 483-492
        • Quittner A.L.
        • Sawicki G.S.
        • McMullen A
        • Rasouliyan L
        • Pasta D.J.
        • Yegin A
        • et al.
        Psychometric evaluation of the Cystic Fibrosis Questionnaire-Revised in a national sample.
        Qual Life Res. 2012; 21 (Epub 2012 Jun 27): 1267-1278https://doi.org/10.1007/s11136-011-0036-z
        • Weiser R.
        • Rye P.D.
        • Mahenthiralingam E.
        Implementation of microbiota analysis in clinical trials for cystic fibrosis lung infection: experience from the OligoG phase 2b clinical trials.
        J Microbiol Methods. Feb 2021; 181 (Epub 2021 Jan 7. PMID: 33421446)106133https://doi.org/10.1016/j.mimet.2021.106133
        • Walshaw M
        • McElvaney G
        • Williams R
        • et al.
        A first-in-patient clinical trial demonstrates that inhaled alginate oligosaccharide (OligoG) is well tolerated in cystic fibrosis (CF) patients. J Cyst Fibros.
        J Cyst Fibros. 2014; 13