Advertisement

Reclassifying inconclusive diagnosis after newborn screening for cystic fibrosis. Moving forward

Published:December 21, 2021DOI:https://doi.org/10.1016/j.jcf.2021.12.010

      Highlights

      • This study investigates the association of cystic fibrosis or CFTR-Related disorders (CFTR-RD) in babies with inconclusive diagnosis at newborn screening.
      • We performed whole CFTR gene sequencing, in vivo CFTR function measurement, and in vitro studies of variants of unknown significance.
      • This workflow differentiated children at high likelihood of evolving to CF, those at extremely low risk of developing a CFTR-RD and those with partial CFTR dysfunction who might develop CFTR-RD later on.

      Abstract

      Background

      Newborn screening for Cystic Fibrosis (CF) is associated with situations where the diagnosis of CF or CFTR related disorders (CFTR-RD) cannot be clearly ruled out.

      Materials/patients and methods

      We report a case series of 23 children with unconclusive diagnosis after newborn screening for CF and a mean follow-up of 7.7 years (4–13). Comprehensive investigations including whole CFTR gene sequencing, in vivo intestinal current measurement (ICM), nasal potential difference (NPD), and in vitro functional studies of variants of unknown significance, helped to reclassify the patients.

      Results

      Extensive genetic testing identified, in trans with a CF causing mutation, variants with varying clinical consequences and 3 variants of unknown significance (VUS). Eighteen deep intronic variants were identified by deep resequencing of the whole CFTR gene in 13 patients and were finally considered as non-pathogenic. All patients had normal CFTR dependent chloride transport in ICM. NPD differentiated 3 different profiles: CF-like tracings qualifying the patients as CF, such as F508del/D1152H patients; normal responses, suggesting an extremely low likelihood of developing a CFTR-RD such as F508del/TG11T5 patients; partial CFTR dysfunction above 20% of the normal, highlighting a remaining risk of developing CFTR-RD such as F508del/F1052V patients. The 3 VUS were reclassified as variant with defective maturation (D537N), defective expression (T582I) or with no clinical consequence (M952T).

      Conclusion

      This study demonstrates the usefulness of combining genetic and functional investigations to assess the possibility of evolving to CF or CFTR-RD in babies with inconclusive diagnosis at neonatal screening.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cystic Fibrosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Munck A.
        Inconclusive diagnosis after newborn screening for cystic fibrosis.
        Int J Neonatal Screen. 2020; 6: 19https://doi.org/10.3390/ijns6010019
        • Munck A.
        • Southern K.W.
        • Castellani C.
        • de Winter-de Groot K.M.
        • Gartner S.
        • Kashirskaya N.
        • et al.
        Defining key outcomes to evaluate performance of newborn screening programmes for cystic fibrosis.
        J Cyst Fibros. 2021; https://doi.org/10.1016/j.jcf.2021.02.006
        • Audrézet M.P.
        • Munck A.
        Newborn screening for CF in France: An exemplary national experience.
        Arch Pediatr. Feb 2020; 27 (eS35–eS40)https://doi.org/10.1016/S0929-693X(20)30049-X
        • Kharrazi M.
        • Yang J.
        • Bishop T.
        • Lessing S.
        • Young S.
        • Graham S.
        • Pearl M.
        • Chow H.
        • Ho T.
        • Currier R.
        • Gaffney L.
        • Feuchtbaum L.
        California cystic fibrosis newborn screening consortium. Newborn screening for cystic fibrosis in California.
        Pediatrics. 2015; 136: 1062-1072https://doi.org/10.1542/peds.2015-0811
        • Salinas D.B.
        • Sosnay P.R.
        • Azen C.
        • Young S.
        • Raraigh K.S.
        • Keens T.G.
        • Kharrazi M.
        Benign outcome among positive cystic fibrosis newborn screen children with non-CF-causing variants.
        J Cyst Fibros. 2015; 14: 714-719https://doi.org/10.1016/j.jcf.2015.03.006
        • Salinas D.B.
        • Sosnay P.R.
        • Azen C.
        • Young S.
        • Raraigh K.S.
        • Keens T.G.
        • Kharrazi M.
        Benign and deleterious cystic fibrosis transmembrane conductance regulator mutations identified by sequencing in positive cystic fibrosis newborn screen children from California.
        PLoS One. 2016; 11 (23)e0155624https://doi.org/10.1371/journal.pone.0155624
        • Groves T.
        • Robinson P.
        • Wiley V.
        • Fitzgerald D.A.
        Long-term outcomes of children with intermediate sweat chloride values in infancy.
        J Pediatr. 2015; 166 (e1-3): 1469-1474https://doi.org/10.1016/j.jpeds.2015.01.052
        • Ren C.L.
        • Fink A.K.
        • Petren K.
        • Borowitz D.S.
        • McColley S.A.
        • Sanders D.B.
        • et al.
        Outcomes of infants with indeterminate diagnosis detected by cystic fibrosis newborn screening.
        Pediatrics. 2015; 135: e1386-e1392https://doi.org/10.1542/peds.2014-3698
        • Terlizzi V.
        • Mergni G.
        • Buzzetti R.
        • Centrone C.
        • Zavataro L.
        • Braggion C.
        Cystic fibrosis screen positive inconclusive diagnosis (CFSPID): experience in Tuscany, Italy.
        J Cyst Fibros. 2019; 18: 484-490https://doi.org/10.1016/j.jcf.2019.04.002
        • Ooi C.Y.
        • Castellani C.
        • Keenan K.
        • Avolio J.
        • Volpi S.
        • Boland M.
        • et al.
        Inconclusive diagnosis of cystic fibrosis after newborn screening.
        Pediatrics. 2015; 135: e1377-e1385https://doi.org/10.1542/peds.2014-2081
        • Salinas D.B.
        • Azen C.
        • Young S.
        • Keens T.G.
        • Kharrazi M.
        • Parad R.B.
        Phenotypes of California CF newborn screen-positive children with CFTR 5T Allele by TG repeat length.
        Genet Test Mol Biomarkers. 2016; 20: 496-503https://doi.org/10.1089/gtmb.2016.0102
        • Munck A.
        • Bourmaud A.
        • Bellon G.
        • Picq P.
        • Farrell P.M.
        Phenotype of children with inconclusive cystic fibrosis diagnosis after newborn screening.
        Pediatr Pulmonol. 2020; 55: 918-928https://doi.org/10.1002/ppul.24634
        • Ooi C.Y.
        • Sutherland R.
        • Castellani C.
        • Keenan K.
        • Boland M.
        • Reisman J.
        • et al.
        Immunoreactive trypsinogen levels in newborn screened infants with an inconclusive diagnosis of cystic fibrosis.
        BMC Pediatr. 2019; 19: 369https://doi.org/10.1186/s12887-019-1756-4
        • Chudleigh J.
        • Chinnery H.
        Psychological impact of NBS for CF.
        Int J Neonatal Screen. 2020; 6: 27https://doi.org/10.3390/ijns6020027
        • Sosnay P.R.
        • Siklosi K.R.
        • Van Goor F.
        • Kaniecki K.
        • Yu H.
        • Sharma N.
        • et al.
        Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene.
        Nat Genet. 2013; 45: 1160-1167https://doi.org/10.1038/ng.2745
        • Sermet-Gaudelus I.
        • Brouard J.
        • Audrézet M.-.P.
        • Couderc Kohen L.
        • Weiss L.
        • Wizla N.
        • et al.
        Guidelines for the clinical management and follow-up of infants with inconclusive cystic fibrosis diagnosis through newborn screening.
        Arch Pediatr. 2017; 24: e1-14https://doi.org/10.1016/j.arcped.2017.07.015
        • Boussaroque A.
        • Audrézet M.-.P.
        • Raynal C.
        • Sermet-Gaudelus I.
        • Bienvenu T.
        • Férec C.
        • et al.
        Penetrance is a critical parameter for assessing the disease liability of CFTR variants.
        J Cyst Fibros. 2020; 19: 949-954https://doi.org/10.1016/j.jcf.2020.03.019
        • Thauvin-Robinet C.
        • Munck A.
        • Huet F.
        • Génin E.
        • Bellis G.
        • Gautier E.
        • et al.
        The very low penetrance of cystic fibrosis for the R117H mutation: a reappraisal for genetic counselling and newborn screening.
        J Med Genet. 2009; 46: 752-758https://doi.org/10.1136/jmg.2009.067215
        • Cuppens H.
        • Lin W.
        • Jaspers M.
        • Costes B.
        • Teng H.
        • Vankeerberghen A.
        • et al.
        Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation.
        J Clin Invest. 1998; 101: 487-496https://doi.org/10.1172/JCI639
        • Sobczyńska-Tomaszewska A.
        • Ołtarzewski M.
        • Czerska K.
        • Wertheim-Tysarowska K.
        • Sands D.
        • Walkowiak J.
        • et al.
        Newborn screening for cystic fibrosis: polish 4 years’ experience with CFTR sequencing strategy.
        Eur J Hum Genet. 2013; 21: 391-396https://doi.org/10.1038/ejhg.2012.180
        • Sands D.
        • Zybert K.
        • Mierzejewska E.
        • Ołtarzewski M.
        Diagnosing cystic fibrosis in newborn screening in Poland - 15 years of experience.
        Dev Period Med. 2015; 19: 16-24
        • Castellani C.
        • Conway S.
        • Smyth A.R.
        • Stern M.
        • Elborn J.S.
        Standards of care for cystic fibrosis ten years later.
        J Cyst Fibros. 2014; 13: S1-S2https://doi.org/10.1016/j.jcf.2014.03.008
        • Baux D.
        • Vaché C.
        • Blanchet C.
        • Willems M.
        • Baudoin C.
        • Moclyn M.
        • et al.
        Combined genetic approaches yield a 48% diagnostic rate in a large cohort of French hearing-impaired patients.
        Sci Rep. 2017; 7: 16783https://doi.org/10.1038/s41598-017-16846-9
        • Tsui L.C.
        Mutations and sequence variations detected in the cystic fibrosis transmembrane conductance regulator (CFTR) gene: a report from the cystic fibrosis genetic analysis consortium.
        Hum Mutat. 1992; 1: 197-203https://doi.org/10.1002/humu.1380010304
        • Claustres M.
        • Thèze C.
        • des Georges M.
        • Baux D.
        • Girodon E.
        • Bienvenu T.
        • et al.
        CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants.
        Hum Mutat. 2017; 38: 1297-1315https://doi.org/10.1002/humu.23276
        • Sasorith S.
        • Baux D.
        • Bergougnoux A.
        • Paulet D.
        • Lahure A.
        • Bareil C.
        • et al.
        The CYSMA web server: An example of integrative tool for in silico analysis of missense variants identified in Mendelian disorders.
        Hum Mutat. 2020; 41: 375-386https://doi.org/10.1002/humu.23941
        • Baux D.
        • Van Goethem C.
        • Ardouin O.
        • Guignard T.
        • Bergougnoux A.
        • Koenig M.
        • et al.
        MobiDetails: online DNA variants interpretation.
        Eur J Hum Genet. 2021; 29: 356-360https://doi.org/10.1038/s41431-020-00755-z
        • Fanen P.
        • Clain J.
        • Labarthe R.
        • Hulin P.
        • Girodon E.
        • Pagesy P.
        • et al.
        Structure-function analysis of a double-mutant cystic fibrosis transmembrane conductance regulator protein occurring in disorders related to cystic fibrosis.
        FEBS Lett. 1999; 452: 371-374https://doi.org/10.1016/s0014-5793(99)00647-x
        • Pranke I.
        • Bidou L.
        • Martin N.
        • Blanchet S.
        • Hatton A.
        • Karri S.
        • et al.
        Factors influencing readthrough therapy for frequent cystic fibrosis premature termination codons.
        ERJ Open Res. 2018; 4https://doi.org/10.1183/23120541.00080-2017
        • Derichs N.
        • Sanz J.
        • Von Kanel T.
        • Stolpe C.
        • Zapf A.
        • Tümmler B.
        • et al.
        Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data.
        Thorax. 2010; 65: 594-599https://doi.org/10.1136/thx.2009.125088
        • Sermet-Gaudelus I.
        • Girodon E.
        • Roussel D.
        • Deneuville E.
        • Bui S.
        • Huet F.
        • et al.
        Measurement of nasal potential difference in young children with an equivocal sweat test following newborn screening for cystic fibrosis.
        Thorax. 2010; 65: 539-544https://doi.org/10.1136/thx.2009.123422
        • Bonini J.
        • Varilh J.
        • Raynal C.
        • Thèze C.
        • Beyne E.
        • Audrezet M.P.
        • et al.
        Small-scale high-throughput sequencing-based identification of new therapeutic tools in cystic fibrosis.
        Genet Med. 2015; 17: 796-806https://doi.org/10.1038/gim.2014.194
        • Bergougnoux A.
        • Délétang K.
        • Pommier A.
        • Varilh J.
        • Houriez F.
        • Altieri J.P.
        • et al.
        Functional characterization and phenotypic spectrum of three recurrent disease-causing deep intronic variants of the CFTR gene.
        J Cyst Fibros. 2019; 18: 468-475https://doi.org/10.1016/j.jcf.2018.10.012
        • Dickinson P.
        • Smith S.N.
        • Webb S.
        • Kilanowski F.M.
        • Campbell I.J.
        • Taylor M.S.
        • et al.
        The severe G480C cystic fibrosis mutation, when replicated in the mouse, demonstrates mistrafficking, normal survival and organ-specific bioelectrics.
        Hum Mol Genet. 2002; 11: 243-251https://doi.org/10.1093/hmg/11.3.243
        • Terlizzi V.
        • Carnovale V.
        • Castaldo G.
        • Castellani C.
        • Cirilli N.
        • Colombo C.
        • et al.
        Clinical expression of patients with the D1152H CFTR mutation.
        J Cyst Fibros. 2015; 14: 447-452https://doi.org/10.1016/j.jcf.2014.12.012
        • Minso R.
        • Schulz A.
        • Dopfer C.
        • Alfeis N.
        • van Barneveld A.
        • Makartian-Gyulumyan L.
        • et al.
        Intestinal current measurement and nasal potential difference to make a diagnosis of cases with inconclusive CFTR genetics and sweat test.
        BMJ Open Respir Res. 2020; 7https://doi.org/10.1136/bmjresp-2020-000736
        • Aalbers B.L.
        • Yaakov Y.
        • Derichs N.
        • Simmonds N.J.
        • De Wachter E.
        • Melotti P.
        • et al.
        Nasal potential difference in suspected cystic fibrosis patients with 5T polymorphism.
        J Cyst Fibros. 2020; 19: 627-631https://doi.org/10.1016/j.jcf.2019.07.001
        • Boussaroque A.
        • Bergougnoux A.
        • Raynal C.
        • Audrézet M.-.P.
        • Sasorith S.
        • Férec C.
        • et al.
        Pitfalls in the interpretation of CFTR variants in the context of incidental findings.
        Hum Mutat. 2019; 40: 2239-2246https://doi.org/10.1002/humu.23884
        • Mesbahi M.
        • Shteinberg M.
        • Wilschanski M.
        • Hatton A.
        • Nguyen-Khoa T.
        • Friedman H.
        • et al.
        Changes of CFTR functional measurements and clinical improvements in cystic fibrosis patients with non p.Gly551Asp gating mutations treated with ivacaftor.
        J Cyst Fibros. 2017; 16: 45-48https://doi.org/10.1016/j.jcf.2016.08.006
        • McCague A.F.
        • Raraigh K.S.
        • Pellicore M.J.
        • Davis-Marcisak E.F.
        • Evans T.A.
        • Han S.T.
        • et al.
        Correlating cystic fibrosis transmembrane conductance regulator function with clinical features to inform precision treatment of cystic fibrosis.
        Am J Respir Crit Care Med. 2019; 199: 1116-1126https://doi.org/10.1164/rccm.201901-0145OC
        • Davis Pamela B.
        Cystic fibrosis.
        Pediatr Rev. 2001; 22 (Aug): 257-264https://doi.org/10.1542/pir.22-8-257
        • Pranke I.M.
        • Hatton A.
        • Simonin J.
        • Jais J.P.
        • Le Pimpec Barthes F.
        • Carsin A.
        • et al.
        Correction of CFTR function in nasal epithelial cells from cystic fibrosis patients predicts improvement of respiratory function by CFTR modulators.
        Sci Rep. 2017; 7: 7375https://doi.org/10.1038/s41598-017-07504-1
        • Noel S.
        • Servel N.
        • Hatton A.
        • Golec A.
        • Rodrat M.
        • et al.
        Correlating genotype with phenotype using CFTR-mediated whole-cell Cl currents in human nasal epithelial cells.
        J Physiol. 2021; (Epub Ahead of Print)