Advertisement
Research Article| Volume 21, ISSUE 3, P463-470, May 2022

Complete CFTR gene sequencing in 5,058 individuals with cystic fibrosis informs variant-specific treatment

Published:November 12, 2021DOI:https://doi.org/10.1016/j.jcf.2021.10.011

      Highlights

      • Full-gene CFTR sequencing identifies CF-causing genotypes in almost all individuals with CF.
      • Full-gene sequencing can identify gene rearrangements that are often missed by other technologies.
      • The presence of additional variants beyond the causal genotype may affect phenotype or drug response.
      • Full- gene sequencing provides a comprehensive catalog of CFTR variation for each individual.
      • An individual’s full CFTR sequence can be re-analyzed as new tools become available.

      Abstract

      Background

      Cystic fibrosis (CF) is a recessive condition caused by variants in each CF transmembrane conductance regulator (CFTR) allele. Clinically affected individuals without two identified causal variants typically have no further interrogation of CFTR beyond examination of coding regions, but the development of variant-specific CFTR-targeted treatments necessitates complete understanding of CFTR genotype.

      Methods

      Whole genome sequences were analyzed on 5,058 individuals with CF. We focused on the full CFTR gene sequence and identified disease-causing variants in three phases: screening for known and structural variants; discovery of novel loss-of-function variants; and investigation of remaining variants.

      Results

      All variants identified in the first two phases and coding region variants found in the third phase were interpreted according to CFTR2 or ACMG criteria (n = 371; 16 [4.3%] previously unreported). Full gene sequencing enabled delineation of 18 structural variants (large insertions or deletions), of which two were novel. Additional CFTR variants of uncertain effect were found in 76 F508del homozygotes and in 21 individuals with other combinations of CF-causing variants. Both causative variants were identified in 98.1% (n = 4,960) of subjects, an increase of 2.3 percentage points from the 95.8% (n = 4,847) who had a registry- or chart-reported disease-causing CFTR genotype. Of the remaining 98 individuals, 78 carried one variant that has been associated with CF (CF-causing [n = 70] or resulting in varying clinical consequences n = 8]).

      Conclusions

      Complete CFTR gene sequencing in 5,058 individuals with CF identified at least one DNA variant in 99.6% of the cohort that is targetable by current molecular or emerging gene-based therapeutic technologies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Cystic Fibrosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kerem B.
        • Rommens J.M.
        • Buchanan J.A.
        • Markiewicz D.
        • Cox T.K.
        • Chakravarti A.
        • et al.
        Identification of the cystic fibrosis gene: genetic analysis.
        Science. 1989; 245: 1073-1080
        • Ratjen F.
        • Bell S.C.
        • Rowe S.M.
        • Goss C.H.
        • Quittner A.L.
        • Bush A.
        Cystic fibrosis.
        Nat Rev Dis Primers. 2015; 1 (10.1038/nrdp.2015.10): 15010
        • Farrell P.M.
        • White T.B.
        • Ren C.L.
        • Hempstead S.E.
        • Accurso F.
        • Derichs N.
        • et al.
        Diagnosis of Cystic Fibrosis: consensus Guidelines from the Cystic Fibrosis Foundation.
        J Pediatr. 2017; (181S, S4-S15.e11. 10.1016/j.jpeds.2016.09.064)
        • Deignan J.L.
        • Grody W.W.
        Molecular Diagnosis of Cystic Fibrosis.
        Curr Protoc Hum Genet. 2016; 88 (9.28.21-29.28.26. 10.1002/0471142905.hg0928s88)
        • Sosnay P.R.
        • Siklosi K.R.
        • Van Goor F.
        • Kaniecki K.
        • Yu H.
        • Sharma N.
        • Ramalho A.S.
        • Amaral M.D.
        • Dorfman R.
        • Zielenski J.
        Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene.
        Nat Genet. 2013; 45 (10.1038/ng.2745): 1160-1167
      1. Registry, C.F.F.P. (2020). 2019 Annual Data Report.

        • Chevalier B.
        • Hinzpeter A.
        The influence of CFTR complex alleles on precision therapy of cystic fibrosis.
        J Cyst Fibros. 2020; 19 (Suppl 1, S15-S18. 10.1016/j.jcf.2019.12.008)
        • Cutting G.R.
        Cystic fibrosis genetics: from molecular understanding to clinical application.
        Nat Rev Genet. 2015; 16: 45-56https://doi.org/10.1038/nrg3849
        • Vanscoy L.L.
        • Blackman S.M.
        • Collaco J.M.
        • Bowers A.
        • Lai T.
        • Naughton K.
        • et al.
        Heritability of lung disease severity in cystic fibrosis.
        Am J Respir Crit Care Med. 2007; 175: 1036-1043
        • Blackman S.M.
        • Commander C.W.
        • Watson C.
        • Arcara K.M.
        • Strug L.J.
        • Stonebraker J.R.
        • et al.
        Genetic modifiers of cystic fibrosis-related diabetes.
        Diabetes. 2013; 62 (db13-0510 [pii];10.2337/db13-0510 [doi]): 3627-3635
        • Drumm M.L.
        • Konstan M.W.
        • Schluchter M.D.
        • Handler A.
        • Pace R.
        • Zou F.
        • et al.
        Gene modifiers of lung disease in cystic fibrosis.
        N Engl J Med. 2005; 353: 1443-1453
        • Stonebraker J.R.
        • Ooi C.Y.
        • Pace R.G.
        • Corvol H.
        • Knowles M.R.
        • Durie P.R.
        • Ling S.C.
        Features of Severe Liver Disease With Portal Hypertension in Patients With Cystic Fibrosis.
        Clin Gastroenterol Hepatol. 2016; 14 (e1203. 10.1016/j.cgh.2016.03.041): 1207-1215
        • Treggiari M.M.
        • Rosenfeld M.
        • Mayer-Hamblett N.
        • Retsch-Bogart G.
        • Gibson R.L.
        • Williams J.
        • Emerson J.
        • Kronmal R.A.
        • Ramsey B.W.
        • Group E.S.
        Early anti-pseudomonal acquisition in young patients with cystic fibrosis: rationale and design of the EPIC clinical trial and observational study.
        Contemp Clin Trials. 2009; 30 (10.1016/j.cct.2009.01.003): 256-268
        • Jun G.
        • Flickinger M.
        • Hetrick K.N.
        • Romm J.M.
        • Doheny K.F.
        • Abecasis G.R.
        • Boehnke M.
        • Kang H.M.
        Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data.
        Am J Hum Genet. 2012; 91 (10.1016/j.ajhg.2012.09.004): 839-848
        • Knapp E.A.
        • Fink A.K.
        • Goss C.H.
        • Sewall A.
        • Ostrenga J.
        • Dowd C.
        • Elbert A.
        • Petren K.M.
        • Marshall B.C.
        The Cystic Fibrosis Foundation Patient Registry. Design and Methods of a National Observational Disease Registry.
        Ann Am Thorac Soc. 2016; 13 (10.1513/AnnalsATS.201511-781OC): 1173-1179
      2. Taylor, C., Commander, C.W., J.M., C., Strug, L.J., Li, W., Wright, F.A., Webel, A.D., Pace, R.G., Stonebraker, J.R., Naughton, K.M., (2011). A novel lung disease phenotype adjusted for mortality attrition for cystic fibrosis genetic modifier studies. Pediatric Pulmonology Epub no. doi: 10.1002/ppul.21456.

        • Blackman S.M.
        • Deering-Brose R.
        • McWilliams R.
        • Naughton K.
        • Coleman B.
        • Lai T.
        • Algire M.
        • Beck S.
        • Hoover-Fong J.
        • Hamosh A.
        Relative contribution of genetic and nongenetic modifiers to intestinal obstruction in cystic fibrosis.
        Gastroenterology. 2006; 131: 1030-1039
        • Blackman S.M.
        • Hsu S.
        • Ritter S.E.
        • Naughton K.M.
        • Wright F.A.
        • Drumm M.L.
        • et al.
        A susceptibility gene for type 2 diabetes confers substantial risk for diabetes complicating cystic fibrosis.
        Diabetologia. 2009; 52: 1858-1865
        • Green D.M.
        • Collaco J.M.
        • McDougal K.E.
        • Naughton K.M.
        • Blackman S.M.
        • Cutting G.R.
        Heritability of respiratory infection with Pseudomonas aeruginosa in cystic fibrosis.
        J Pediatr. 2012; 161 (S0022-3476(12)00100-X [pii];10.1016/j.jpeds.2012.01.042 [doi]): 290-295
        • McLaren W.
        • Gil L.
        • Hunt S.E.
        • Riat H.S.
        • Ritchie G.R.
        • Thormann A.
        • Flicek P.
        • Cunningham F.
        The Ensembl Variant Effect Predictor.
        Genome Biol. 2016; 17 (10.1186/s13059-016-0974-4): 122
        • Chen X.
        • Schulz-Trieglaff O.
        • Shaw R.
        • Barnes B.
        • Schlesinger F.
        • Källberg M.
        • Cox A.J.
        • Kruglyak S.
        • Saunders C.T.
        Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications.
        Bioinformatics. 2016; 32 (10.1093/bioinformatics/btv710): 1220-1222
        • Richards S.
        • Aziz N.
        • Bale S.
        • Bick D.
        • Das S.
        • Gastier-Foster J.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424https://doi.org/10.1038/gim.2015.30
        • Jaganathan K.
        • Kyriazopoulou Panagiotopoulou S.
        • McRae J.F.
        • Darbandi S.F.
        • Knowles D.
        • Li Y.I.
        • et al.
        Predicting Splicing from Primary Sequence with Deep Learning.
        Cell. 2019; 176 (e524): 535-548https://doi.org/10.1016/j.cell.2018.12.015
        • Lee M.
        • Roos P.
        • Sharma N.
        • Atalar M.
        • Evans T.A.
        • Pellicore M.J.
        • Davis E.
        • Lam A.N.
        • Stanley S.E.
        • Khalil S.E.
        Systematic Computational Identification of Variants That Activate Exonic and Intronic Cryptic Splice Sites.
        Am J Hum Genet. 2017; 100 (10.1016/j.ajhg.2017.04.001): 751-765
        • Hefferon T.W.
        • Groman J.D.
        • Yurk C.E.
        • Cutting G.R.
        A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing.
        PNAS. 2004; 101: 3504-3509
        • Mussaffi H.
        • Prais D.
        • Mei-Zahav M.
        • Blau H.
        Cystic fibrosis mutations with widely variable phenotype: the D1152H example.
        Pediatr Pulmonol. 2006; 41 (10.1002/ppul.20343): 250-254
        • McCague A.F.
        • Raraigh K.S.
        • Pellicore M.J.
        • Davis-Marcisak E.F.
        • Evans T.A.
        • Han S.T.
        • Lu Z.
        • Joynt A.T.
        • Sharma N.
        • Castellani C.
        Correlating Cystic Fibrosis Transmembrane Conductance Regulator Function with Clinical Features to Inform Precision Treatment of Cystic Fibrosis.
        Am J Respir Crit Care Med. 2019; 199 (10.1164/rccm.201901-0145OC): 1116-1126
        • Januska M.N.
        • Marx L.
        • Walker P.A.
        • Berdella M.N.
        • Langfelder-Schwind E.
        The CFTR variant profile of Hispanic patients with cystic fibrosis: impact on access to effective screening, diagnosis, and personalized medicine.
        J Genet Couns. 2020; 29 (10.1002/jgc4.1271): 607-615
        • Chu C.S.
        • Trapnell B.C.
        • Curristin S.
        • Cutting G.R.
        • Crystal R.G
        Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA.
        Nat Genet. 1993; 3: 151-156https://doi.org/10.1038/ng0293-151
        • Kiesewetter S.
        • Macek M.
        • Davis C.
        • Curristin S.M.
        • Chu C.S.
        • Graham C.
        • et al.
        A mutation in CFTR produces different phenotypes depending on chromosomal background.
        Nat Genet. 1993; 5 (10.1038/ng1193-274): 274-278
        • Morral N.
        • Bertranpetit J.
        • Estivill X.
        • Nunes V.
        • Casals T.
        • Giménez J.
        • Reis A.
        • Varon-Mateeva R.
        • Macek Jr., M.
        • Kalaydijeva L.
        The origin of the major cystic fibrosis mutation (deltaF508) in European populations.
        Nature Genet. 1994; 7: 169-175
        • Alirezaie N.
        • Kernohan K.D.
        • Hartley T.
        • Majewski J.
        • Hocking T.D.
        ClinPred: prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants.
        Am J Hum Genet. 2018; 103 (10.1016/j.ajhg.2018.08.005): 474-483
      3. Collaco, J.M., Raraigh, K.S., Betz, J., Aksit, M.A., Blau, N., Brown, J., Dietz, H.C., MacCarrick, G., Nogee, L.M., Sheridan, M.B., (2021). Accurate assignment of disease liability to genetic variants using only population data. (10.1101/2021.04.19.440463).

        • Dork T.
        • Dworniczak B.
        • Aulehla-Scholz C.
        • Wieczorek D.
        • Bohm I.
        • Mayerova A.
        • et al.
        Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens.
        Hum Genet. 1997; 100: 365-377
        • Karczewski K.J.
        • Francioli L.C.
        • Tiao G.
        • Cummings B.B.
        • Alföldi J.
        • Wang Q.
        • et al.
        The mutational constraint spectrum quantified from variation in 141,456 humans.
        Nature. 2020; 581 (10.1038/s41586-020-2308-7): 434-443